GEOPHYSICS - GRADUATE CERTIFICATE

The geophysics graduate certificate offers a coherent curriculum in geophysics that can complement and supplement a student's regular degree program and encourages multi-disciplinary education in the area of geophysics. The geophysics certificate program allows students to obtain recognition for their accomplishments in geophysics without having to switch into the geophysics degree program.

Requirements

Admission Requirements

A student wishing to be considered for a certificate in geophysics must be pursuing a graduate degree in one of the participating graduate departments (ASEN, APS, CEAE, ECEN, GEOG, GEOL, MCEN, PHYS). Students from outside the participating departments can apply for entry to the geophysics certificate program by submitting a letter addressed to the Geophysics Graduate Program Committee.

A student must have a course background that includes mathematics through three semesters of calculus and four undergraduate science or engineering courses.

Program Requirements

All students must take at least three geophysics core courses and the Seminar in Geophysics. At least one of the three geophysics core courses must be from the earth and planetary physics (EPP) series, and another must be from outside the student's home department. Most geophysics core courses are offered once every two years.

Completion with a grade of B or better of a total of three geophysics core courses (at least one from the EPP sequence) and one credit hour for the Seminar in Geophysics.

A certificate in geophysics will be awarded upon the student's completion of degree requirements in their home department. Upon request from a student, the program director and the student's advisor will determine whether a student has met the requirements for the certificate and will generate a letter to the appropriate department head and dean. The certificate is not intended as a substitute for a degree and will be awarded only upon completion of a graduate degree.

Required Courses and Credits

Code	Title	Credit Hours
Required Seminar		
ASTR/GEOL/PHYS 6650	Seminar in Geophysics	1
Core Courses		
Choose at least three of the following:		
ASTR/GEOL/PHYS 6610	S Earth and Planetary Physics 1	
ASTR/GEOL/PHYS 6620	S Earth and Planetary Physics 2	
ASTR/GEOL/PHYS 6630	S Earth and Planetary Physics 3	
ASTR/GEOL/PHYS 6650	S Seminar in Geophysics	

То	tal Credit Hours		10
	MCEN 5023	Solid Mechanics 1	
	GEOL/PHYS 6670	Geophysical Inverse Theory	
	GEOL 5714	Field Geophysics	
	GEOL 5690	Tectonic History of the Western United States	
	GEOL 5110	Geomechanics	
	GEOL 5093	Remote Sensing of the Environment	
	CVEN 6595	Earthquake Engineering	
	CVEN 5768	Introduction to Rock Mechanics	
	CVEN 5718	Mechanics and Dynamics of Glaciers	
	CVEN 5131	Continuum Mechanics and Elasticity	
	ASTR/ATOC/GEOL 5820		
	ASTR/GEOL 5800	Planetary Surfaces and Interiors	
	ASTR 5400	Introduction to Fluid Dynamics	
	ASTR 5300	Introduction to Magnetospheres	
	ASTR/PHYS 5150	Introductory Plasma Physics	
	ASTR 5140/ PHYS 5141	Astrophysical and Space Plasmas	
	ASEN 6090	Advanced Global Navigation Satellite Systems: Software and Applications	
	ASEN 6055	Data Assimilation & Inverse Methods for Earth & Geospace Observations	
	ASEN 5335	Aerospace Environment	
	ASEN 5307	Engineering Data Analysis Methods	
	ASEN 5245	Radar and Remote Sensing	
	ASEN 5090	Introduction to Global Navigation Satellite Systems	
	ASEN 5050	Space Flight Dynamics	
	APPM 7300	Nonlinear Waves and Integrable	