DATA SCIENCE - MASTER OF SCIENCE (MS) ONLINE

The online Master of Science degree in Data Science (MS-DS) on Coursera is an interdisciplinary degree program offered through the University of Colorado Boulder and hosted online through Coursera's learning platform. With performance-based admissions and no application process, the MS-DS is ideal for individuals with a broad range of undergraduate education and/or professional experience in computer science, information science, mathematics and statistics.

Data science is a multidisciplinary field that focuses on the extraction of knowledge and insight from large datasets. Data scientists are tasked with using a range of skills in applied mathematics, statistics, and computer science, and in domain applications such as information science, geography, business, media and the humanities.

The MS-DS on Coursera provides learners with a strong foundation in acquiring, cleaning and managing data. Students will learn to analyze large datasets using data mining and machine learning techniques. Students will also design, conduct, and run statistical experiments and models; draw rational conclusions from data using probability theory and statistics; and more.

Graduates of the MS-DS on Coursera program will be well-prepared to apply data science skills to a specific domain area. Graduates will also be able to clearly communicate the results of data science analysis to a non-technical audience; structure effective meetings and projects using collaboration skills; and act ethically in the role of professional data scientist.

Topic Areas

General Data Science

Data science is a multidisciplinary field that uses scientific methods, processes, applications, algorithms and systems to extract knowledge and insights from structured and unstructured data.

Applied Mathematics

The Department of Applied Mathematics in the College of Arts and Sciences offers a range of courses and research opportunities in many areas, including computational mathematics, mathematical biology, nonlinear phenomena, physical applied mathematics, and probability and statistics.

Computer Science

Computer science is an exciting and challenging field that has an impact on many parts of our lives. Computer scientists craft the technologies that enable the digital devices we use every day. They develop the large-scale software that powers business and industry, advance the computational techniques and write the software that supports scientists in their study of the world around us. Many new applications of computing technology remain to be discovered. Computing will be at the heart of future revolutions in business, science and society. Students who study computer science will be at the forefront of these important advances.

Information Science

Information science considers the relationships between people, places and technology and the information those interactions yield. The internet is a broad example of a socio-technical system that is comprised of hardware and software, but in daily life is better understood as a

constantly changing social infrastructure upon which complex forms of human-human and human-information interaction rest. Scholars and students of information science develop new methods to study these socio-technical phenomena, and translate those findings to the design and development of useful and meaningful technology.

Program Policies

This specialized program does not align with standard campus policies. Please refer to the Special Online Programs (https://catalog.colorado.edu/specialized-programs/) section of the catalog for more information.

Requirements

Admission Requirements

Students are automatically admitted to the degree program after meeting all admission requirements below.#All admitted students receive an official offer letter via email. See the program website for details.

- · Pass one pathway with a pathway GPA of 3.0 or higher
- Earn a C or better in all pathway courses within their chosen pathway
- · Earn an overall cumulative GPA of 3.0 or higher
- Indicate interest in degree admission (via the enrollment form)

Performance-Based Admission

To be admitted to the MS-DS on Coursera as a degree-seeking student, students must enroll in and complete a pathway with a 3.00 GPA or better. A pathway is a series of 3 one-credit courses with a focus on either statistics or computer science—students choose the pathway that is right for them. Pathway courses are an important part of the required curriculum, so students make direct progress toward their degree as they complete their pathway.

Prerequisite Knowledge

There are no formal prerequisites for the MS-DS on Coursera, but students should be knowledgeable in the following:

- Python
- R programming
- · Calculus including derivatives and integrals
- Linear algebra including matrix multiplication, matrix inversion and solving linear systems using matrices

If students do not yet feel ready to complete their pathway courses, the program suggests reviewing courses on the Coursera platform. Students can enroll in a pathway as a non-credit learner, which gives them the option of previewing course content. Then, they can upgrade to the for-credit version and pay tuition when they are ready.

Required Courses and Credits

The MS-DS is a non-thesis degree that requires 30 credit hours of coursework. Students must complete 21 credits of core coursework in statistics, computer science, and general core concepts as well as 9 credits of elective coursework. Students will also participate in practical, hands-on projects that utilize cloud-based programming environments and Jupyter Notebooks. Coursework includes access to real-world big data sets to prepare students for their future careers.

Learner Journeys

Students may complete courses in any order, but are advised to follow one of the recommended learner journeys below.

Statistics Pathway

We recommend that students who are skilled in statistics complete their courses in the following order.

Code	Title	Credit Hours
Data Science Founda	ations: Statistical Inference Courses	3
DTSA 5001	Probability Theory: Foundation for Data Science	
DTSA 5002	Statistical Inference for Estimation in Data Science	
DTSA 5003	Hypothesis Testing for Data Science	
Vital Skills for Data S	Scientists Courses	4
DTSA 5301	Data Science as a Field	
DTSA 5302	Cybersecurity for Data Science	
DTSA 5303	Ethical Issues in Data Science	
DTSA 5304	Fundamentals of Data Visualization	
Core Courses		
Complete in any orde	er	
Statistical Modeling f	or Data Science Courses	3
DTSA 5011	Modern Regression Analysis in R	
DTSA 5012	ANOVA and Experimental Design	
DTSA 5013	Generalized Linear Models and Nonparametric Regression	
Data Science Foundate	tions: Data Structures & Algorithms Courses	3
DTSA 5501	Algorithms for Searching, Sorting, and Indexing	
DTSA 5502	Trees and Graphs: Basics	
DTSA 5503	Dynamic Programming, Greedy Algorithms	
Data Mining: Foundations & Practice		3
DTSA 5504	Data Mining Pipeline	
DTSA 5505	Data Mining Methods	
DTSA 5506	Data Mining Project	
Machine Learning Cou	ırses	3
DTSA 5509	Introduction to Machine Learning - Supervised Learning	
DTSA 5510	Unsupervised Algorithms in Machine Learning	
DTSA 5511	Introduction to Deep Learning	
Databases Courses		2
DTSA 5733	Relational Database Design	
DTSA 5734	The Structured Query Language (SQL)	
Data Science Electiv	e Courses	9
Total Credit Hours		30

Computer Science Pathway

We recommend that students who are skilled in computer science complete their courses in the following order.

Code Data Science Found Courses	Title lations: Data Structures and Algorithms	Credit Hours 3
DTSA 5501	Algorithms for Searching, Sorting, and Indexing	

DTSA 5502	Trees and Graphs: Basics	
DTSA 5503	Dynamic Programming, Greedy Algorithms	
Vital Skills for Data	a Scientists Courses	4
DTSA 5301	Data Science as a Field	
DTSA 5302	Cybersecurity for Data Science	
DTSA 5303	Ethical Issues in Data Science	
DTSA 5304	Fundamentals of Data Visualization	1
Core Courses		
Complete in any or	der	
Data Science Found Courses	lations: Statistical Inference for Data Science	3
DTSA 5001	Probability Theory: Foundation for Data Science	
DTSA 5002	Statistical Inference for Estimation in Data Science	
DTSA 5003	Hypothesis Testing for Data Science	
Statistical Modeling	for Data Science Courses	3
DTSA 5011	Modern Regression Analysis in R	
DTSA 5012	ANOVA and Experimental Design	
DTSA 5013	Generalized Linear Models and Nonparametric Regression	
Data Mining Founda	ations and Practice Courses	3
DTSA 5504	Data Mining Pipeline	
DTSA 5505	Data Mining Methods	
DTSA 5506	Data Mining Project	
Machine Learning C	ourses	3
DTSA 5509	Introduction to Machine Learning - Supervised Learning	
DTSA 5510	Unsupervised Algorithms in Machine Learning	
DTSA 5511	Introduction to Deep Learning	
Databases Courses		2
DTSA 5733	Relational Database Design	
DTSA 5734	The Structured Query Language (SQL)	
Data Science Elect	ive Courses	9
Total Credit Hours		31

Engineering Management Electives

Up to 6 credits offered by the ME-EM on Coursera from the list of courses below may be applied as elective credit toward the Data Science MS degree. Courses must be graduate level and meet all applicable academic standards, and may not be double counted toward two credentials of the same level. Only courses offered through Coursera may be used.

(Code	Title	Credit Hours
F	Project Management	Courses	3
	EMEA 5031	Project Management: Foundations and Initiation	
	EMEA 5032	Project Planning and Execution	
	EMEA 5033	Agile Project Management	
F	Product Developmen	t Courses	3
	EMEA 5021	Product Cost and Investment Cash Flow Analysis	

EMEA 5022	Project Valuation and the Capital
	Budgeting Process
EMEA 5023	Financial Forecasting and Reporting

Total Credit Hours