COMPUTER SCIENCE BACHELOR OF ARTS (BA)

Computer science is an exciting and challenging field that has impact on many parts of our lives. Computer scientists craft the technologies that enable the digital devices we use every day. They develop the largescale software that powers business and industry, and they advance the computational techniques and write the software that supports scientists in their study of the world around us. They create the software that social scientists use to identify and analyze patterns in the behavior of social groups and human behavior in social networks and the applications that humanists and linguists use to research language development. Many new applications of computing technology remain to be discovered. Indeed, computing will be at the heart of future revolutions in business, science and society. Students who study computer science now will be at the forefront of those important advances.

Computer science offers study in the fields of computer systems, cyber security, robotics, algorithm design, artificial intelligence, software and web engineering, programming languages, database design, humancomputer interaction, machine learning, data science, numerical and parallel computing, speech and language processing and theoretical computer science.

Computer science is concerned with how computers are constructed, how they store and process data, how they are used in problem solving and how the quality of those solutions is assessed. It is about the science of creating software for a variety of users. It is about understanding how that software interacts with the hardware on which it is run. Computer science goes well beyond the machine to the study of how people interact with the technologies around them. Applications of computer science reach far and wide.

For more information, visit the department's BA Degree (https:// www.colorado.edu/cs/academics/undergraduate-programs/bachelor-arts/bachelor-arts-degree-requirements/) webpage.

A student may not earn both the BS and BA in computer science. A student may not earn both a bachelor's degree in computer science and the minor in computer science from CU Boulder.

Requirements

The degree provides considerable freedom in the selection of specific courses to fulfill major requirements, allowing students to tailor the degree to their individual needs and interests.

For more information, visit the department's BA Degree (https:// www.colorado.edu/cs/academics/undergraduate-programs/bachelor-arts/bachelor-arts-degree-requirements/) webpage.

Students earning a BA in Computer Science from the College of Engineering and Applied Science must meet the graduation requirements (https://www.colorado.edu/engineering-advising/get-your-degree/ graduation-requirements/) as laid out by the College of Engineering and Applied Science. A student may not earn both a BA degree in computer science and a BS degree in computer science from CU Boulder. A student may not earn a bachelor's degree in computer science and a minor in computer science from CU Boulder.

Note: Prior to the 2020-2021 academic year, this program was offered by the College of Arts \& Sciences. Students who declared this program
prior to the 2020-2021 academic year should refer to the requirements as defined during the academic year the major was declared (see the University Catalog archive (https://catalog.colorado.edu/archive/)).

Required Courses and Credits

Students must complete modified General Education requirements, which include about 42-48 credit hours, in addition to the required courses for the CS major listed below. Students will complete one lower division and one upper division writing course, 12 credit hours of Arts \& Humanities, 12 credit hours of Social Sciences, 12 credit hours of Natural Science, 3 credit hours of Diversity with U.S. Perspective, and 3 credit hours of Diversity with Global Perspective. The courses that fulfill the Diversity requirement are allowed to double count with other areas of General Education as appropriate by the assigned course attributes. Writing courses approved by the College of Engineering and Applied Science can be counted for the writing requirements in the General Education writing categories. Students can use courses from their General Education to also count for their additional area of study or major requirements.

Students are required to pursue an Additional Area of Study as part of earning a BA in computer science. The additional area can be any available minor or certificate from any of CU Boulder's colleges and schools (Arts \& Sciences, Business, EAS, CMCI, Education, Music). Students completing a dual degree (by pursuing another major) fulfill the Additional Area of Study requirement with those plans.

Any Additional Area of Study that is not part of a dual degree must be at least 15 credit hours. Programs that do not meet this requirement will be considered by petition and students will be required to add additional coursework.

The minimum required hours to complete the CSEN-BA degree is 120 total credit hours.

Code	Title	Credit Hours
Foundations Courses		23
CSCI 1300	Computer Science 1: Starting Computing	4
CSCI 2270	Computer Science 2: Data Structures	4
CSCI 2400	Computer Systems	4
CSCI 3104	Algorithms	4
CSCI 3155	Principles of Programming Languages	4
CSCI 3308	Software Development Methods and Tools	3
Core Courses		
Choose four.		12-15
CSCI 3002	Fundamentals of Human Computer Interaction	
CSCI 3202	Introduction to Artificial Intelligence	
CSCI 3287	Design and Analysis of Database Systems	
CSCI 3302	Introduction to Robotics	
CSCI 3403	Introduction to CyberSecurity for a Converged World	
CSCI 3434	Theory of Computation	
CSCI 3656	Numerical Computation	
or APPM 4600	Numerical Methods and Scientific Comput	
CSCI 3753	Design and Analysis of Operating Systems	

CSCI 4022	Advanced Data Science	
CSCI 4273	Network Systems	
CSCI 4448	Object-Oriented Analysis and Design	
CSCI Upper-Division Electives		
Choose two to four additional upper-division CSCI courses or	$7-10$	
approved courses from outside CSCI to reach 45 CSCI credit		
hours.		

Required Ancillary Coursework	
Code	Title

Mathematics		$8-13$
Calculus		
MATH 1300	Calculus 1	
or APPM 1350	Calculus 1 for Engineers	
or APPM 1345	Calculus 1 with Algebra, Part B	
or MATH 1310 Calculus for Life Sciences		
MATH 2300	Calculus 2	
or APPM 1360	Calculus 2 for Engineers	
Discrete Mathematics		
Choose one:		3

Choose one:	
CSCI 2824	Discrete Structures
or ECEN 2703	Discrete Mathematics for Computer Engineers
or APPM 3170	Discrete Applied Mathematics
or MATH 2001	Introduction to Discrete Mathematics

Linear Algebra or Probability/Statistics
Choose one:

Choose one: Linear Algebra	3-4
CSCI 2820	Linear Algebra with Computer Science Applications
MATH 2130	Introduction to Linear Algebra for Non- Mathematics Majors
MATH 2135	Introduction to Linear Algebra for Mathematics Majors
APPM 3310	Matrix Methods and Applications
Probability/Statistics	
CSCI 3022	Introduction to Data Science with Probability and Statistics
MATH 3510	Introduction to Probability and Statistics MATH 4510Introduction to Probability Theory APPM 3570Applied Probability STAT 3100Applied Probability ECON 3818Introduction to Statistics with Computer Applications
STAT 4000	Statistical Methods and Application I

Logic \& Ethics
Logic
Choose one:

PHIL 1440	Critical Thinking
PHIL 2440	Symbolic Logic
Ethics	
Choose one:	
CSCI 2750	Computing, Ethics and Society
PHIL 1100	Ethics

PHIL 1200	Contemporary Social Problems
PHIL 2160	Ethics and Information Technology
PHIL 3100	Ethical Theory
EHON 1151	Critical Encounters
ENLP 2000	Leadership, Fame and Failure
INFO 4601	Ethical and Policy Dimensions of Information and Technology

Additional Area of Study

Approved minor, certificate or dual degree program at CU

Recommended Four-Year Plan of Study

This four-year plan of study is based on students starting at the Calculus 1 level. This plan is flexible and CSCI course substitutions in year two based on starting MATH or other requirements should be discussed with an academic advisor.

General Education Distribution and Diversity requirements (https:// www.colorado.edu/artsandsciences/undergraduate/degree-requirements/general-education-requirements/) can be met with courses for the Additional Area of Study. Some additional areas of study may exceed 120 total credit hours.

For more information on required courses including all options for Calculus, additional MATH, PHIL and CSEN-BA Core and Upper Division electives, see the Requirements tab. Detailed information is also available on the BA Degree Requirements (https://www.colorado.edu/cs/current-students/undergraduate-students/ba-degree/ba-degree-requirements/) webpage.

Year One

Spring Semester

CSCI 2270 Computer Science 2: Data Structures 4
MATH 2300 Calculus 2 5

Logic or Ethics Course (Logic recommended prior to Discrete 3
Structures, also counts toward Gen Ed)
General Education Skills course (example: Lower-division 3
Written Communication)
Credit Hours
15
Year Two
Fall Semester
CSCI 2400 Computer Systems 4
CSCI 2824 Discrete Structures 3

General Education Distribution course (example: Arts \& 3
Humanities)
Additional Area of Study Course 3

General Education Distribution course (example: Natural Science)	3-4
Credit Hours	16-17
Spring Semester	
CSCI 3104 Algorithms	4
CSCI $3308 \quad$Software Development Methods and Tools	3
Linear Algebra, Probability or Statistics course	3-4
Additional Area of Study	3
Additional Area of Study	3
Credit Hours	16-17
Year Three	
Fall Semester	
CSCI 3155 Principles of Programming Languages	4
CSCI core course or CSCI Upper-division Elective	3-4
Additional Area of Study	3
Upper-divison General Education Skills course (example: Upperdivision Written Communication)	3
General Education Distribution course (example: Natural Sciences with or without lab)	3-5
Credit Hours	16-19
Spring Semester	
CSCI core course or CSCI Upper-division Elective	3-4
CSCI core course or CSCI Upper-division Elective	3-4
Additional Area of Study	3
General Education Distribution/Diversity course (example: Social Sciences/Global Perspective)	3
Free Elective	2
Credit Hours	14-16
Year Four	
Fall Semester	
CSCI core course or CSCI Upper-division Elective	3-4
CSCI Upper-division Elective or Capstone-1	3-4
Additional Area of Study or General Education Distribution course	3
Additional Area of Study or General Education Distribution course	3
General Education Distribution course	3
Credit Hours	15-17
Spring Semester	
CSCI Upper-division Elective	3-4
CSCI Upper-division Elective or Capstone-2	3-4
Additional Area of Study or General Education Distribution course	3
Additional Area of Study or General Education Distribution/ Diversity course (example: Social Sciences/US Perspective)	3

Credit Hours	$12-14$
Total Credit Hours	$120-132$

Learning Outcomes

Upon graduation, students are expected to be able to:

- Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- Communicate effectively in a variety of professional contexts.
- Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
- Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- Apply computer science theory and software development fundamentals to produce computing-based solutions.

Program Educational Objectives

Within 3-5 years after graduating with a Bachelor of Arts degree in computer science, our graduates will be:

- Broadly educated and versatile. Able to draw upon foundational knowledge, learn, adapt and successfully bring to bear analytical and computational approaches on changing societal and technological challenges.
- Inspiring and collaborative. Are leaders and responsible citizens whose strengths come from an ability to draw on and contribute to diverse teams, expertise and experiences.
- Innovative. Drive scientific and societal advancement through technological innovation and entrepreneurship.
- Engaged. Are engaged with the University of Colorado, the state of Colorado and technical and scientific professional communities.

Bachelor's-Accelerated Master's Degree Program(s)

The bachelor's-accelerated master's (BAM) degree program options offer currently enrolled CU Boulder undergraduate students the opportunity to receive a bachelor's and master's degree in a shorter period of time. Students receive the bachelor's degree first but begin taking graduate coursework as undergraduates (typically in their senior year)

Because some courses are allowed to double count for both the bachelor's and the master's degrees, students receive a master's degree in less time and at a lower cost than if they were to enroll in a stand-alone master's degree program after completion of their baccalaureate degree. In addition, staying at CU Boulder to pursue a bachelor's-accelerated master's program enables students to continue working with their established faculty mentors.

Admissions Requirements

BA and MS in Computer Science

In order to gain admission to the BAM program named above, a student must meet the following criteria:

- Have a cumulative GPA of 3.50 or higher.
- Have completed all prerequisite courses with grades of B or better.

Code	Title	Credit Hours
CSCI 1300	Computer Science 1: Starting Computing	4
CSCI 2270	Computer Science 2: Data Structures	4
$\operatorname{CSCI} 2400$	Computer Systems	4
$\operatorname{CSCI} 3104$	Algorithms	4

CSCI 3155
Principles of Programming Languages
(or CSCl 3753 Design and Analysis of Operating Systems)

- Students who do not meet the first two criteria, must have one letter of reference from a faculty member or your undergraduate academic advisor outlining why you should be considered. Your letter-writer should send their letter directly to gradadms@cs.colorado.edu.
- Have at least junior status within the bachelor's degree program.
- Students may submit their intent to apply during the term they are completing their final class from the list of prerequisites.

BA in Computer Science, MS in Computational Linguistics, Analytics, Search and Informatics

In order to gain admission to the BAM program named above, a student must meet the following criteria:

- Have a cumulative GPA of 3.50 or higher.
- Have completed all prerequisite courses with grades of B or better.

Code	Title	Credit Hours
CSCI 1300	Computer Science 1: Starting Computing	4
CSCI 2270	Computer Science 2: Data Structures	4
$\begin{aligned} & \text { CSCI } 3104 \\ & \quad \text { or CSCI } 3022 \end{aligned}$	Algorithms Introduction to Data Science with Probability Statistics	and
LING 2000	Introduction to Linguistics	3
$\begin{gathered} \text { CSCI } 3832 / 5832 \\ \text { or CSCI } 3202 \\ \text { or CSCI } 4622 \end{gathered}$	Natural Language Processing Introduction to Artificial Intelligence Machine Learning	3
One of the following courses during the semester the student applies:		
LING 5430	Semantics and Pragmatics	
LING 5420	Morphology and Syntax	
LING 5030	Linguistic Phonetics	
- Have at least junior status within the bachelor's degree program. - Provide two letters of reference, one written by the course instructor of the LING 5XXX course they are taking during the semester they apply, the other by the instructor from an upper-division course in Computer Science. Letters should be sent directly to the CLASIC Program Coordinator.		

BA in Computer Science, MS in Data Science

In order to gain admission to the BAM program named above, a student must meet the following criteria:

- Have a cumulative GPA of 3.25 or higher.
- Have completed all prerequisite courses with grades of B or better.

Code	Title	Credit Hours
CSCI 1300	Computer Science 1: Starting Computing	4
CSCI 2270	Computer Science 2: Data Structures	4
CSCI 2400	Computer Systems	4
$\operatorname{CSCI} 3022$	Introduction to Data Science with	3

CSCI 3308
Software Development Methods and Tools

- Have at least junior status within the bachelor's degree program.
- Students may submit their intent to apply during the term they are completing their final class from the list of prerequisites.

BA in Computer Science, MS in Network Engineering

In order to gain admission to the BAM program named above, a student must meet the following criteria:

- Have a cumulative GPA of 3.300 or higher
- Have completed the following prerequisite courses with a B or better. (If a student has transfer credit for one of the following courses, or has taken a commonly accepted course substitution for one of the above courses, their grade in that alternate course can be used to determine their eligibility for this BAM program.)

Code	Title	Credit Hours
CSCI 1300	Computer Science 1: Starting Computing	4
CSCI 2270	Computer Science 2: Data Structures	4
CSCI 2400	Computer Systems	4
CSCI 3308	Software Development Methods and Tools	3
CSCI 3753	Design and Analysis of Operating Systems	4
- Have at least junior status within the bachelor's degree program.		
- Students may submit their intent to apply during the term they are		
completing their final class from the list of prerequisites.		

Program Requirements

Students may take up to and including 12 hours while in the undergraduate program which can later be used toward the master's degree. However, only 6 credits may be double-counted toward the bachelor's degree and the master's master's degree.

Students must apply to graduate with the bachelor's degree, and apply to continue with the master's degree, early in the semester in which the undergraduate requirements will be completed.

Please see the computer science accelerated master's webpage (https:// www.colorado.edu/cs/academics/undergraduate-programs/accelerated-masters-programs/computer-science-accelerated-masters/) for more information.

