COMPUTER SCIENCE

The University of Colorado Boulder Computer Science graduate program is one of the top ranked programs in the U.S. News & World Report Best Graduate Schools issue among public universities. Students receive a strong education and conduct groundbreaking tier-one research. We have 50+ faculty members conducting fundamental and applied research in artificial intelligence, robotics, computational biology, human centered computing, numerical & scientific computing, programming languages, software engineering, systems and networking and theory of computing.

Boulder is also home to research and development operations for many large companies and four federal research labs: the National Center for Atmospheric Research, the National Institute for Standards and Technology, the National Oceanic and Atmospheric Administration and the National Renewable Energy Laboratory.

Recent doctoral and master’s graduates accepted employment at companies including, but not limited to, the following: Microsoft, Apple, Google, Facebook, Twitter, Cisco, Raytheon, HP, NASA, Amazon, Sandia National Laboratories, Northrop Grumman and Seagate. Many of our graduating PhD students also enter careers in academia.

For more information, visit the Computer Science (http://www.colorado.edu/cs) website.

Master's Degrees

• Computer Science - Master of Science (MS) (catalog.colorado.edu/graduate/colleges-schools/engineering-applied-science/programs-study/computer-science/computer-science-master-science-ms)

• Computer Science - Professional Master of Science (MSCPS) (catalog.colorado.edu/graduate/colleges-schools/engineering-applied-science/programs-study/computer-science/computer-science-professional-master-science-mscps)

Doctoral Degree

• Computer Science - Doctor of Philosophy (PhD) (catalog.colorado.edu/graduate/colleges-schools/engineering-applied-science/programs-study/computer-science/computer-science-doctor-philosophy-phd)

Faculty

While many faculty teach both undergraduate and graduate students, some instruct students at the undergraduate level only. For more information, contact the faculty member’s home department.

Alistar, Mirela
Assistant Professor; PhD, Danmarks Tekniske Universitet (Denmark)

Anderson, Kenneth M. (https://experts.colorado.edu/display/fisid_113566)
Professor; PhD, University of California, Irvine

Black, John (https://experts.colorado.edu/display/fisid_126540)
Associate Professor; PhD, University of California, Davis

Boese, Elle
Instructor; MS, Colorado State University

Brown, Jed (https://experts.colorado.edu/display/fisid_153965)
Assistant Professor; DSc, ETH Zürich (Switzerland)

Brubaker, Jed Richards (https://experts.colorado.edu/display/fisid_156193)
Assistant Professor; PhD, University of California, Irvine

Byrd, Richard H.
Professor Emeritus

Cai, Xiao-Chuan (https://experts.colorado.edu/display/fisid_100636)
Professor; PhD, New York University

Chen, Lijun (https://experts.colorado.edu/display/fisid_149477)
Assistant Professor; PhD, California Institute of Technology

Clauset, Aaron (https://experts.colorado.edu/display/fisid_147554)
Associate Professor; PhD, University of New Mexico

Colunga, Eliana (https://experts.colorado.edu/display/fisid_129477)
Associate Professor; PhD, Indiana University Bloomington

Constantine, Paul (https://experts.colorado.edu/display/fisid_159755)
Assistant Professor; PhD, Stanford University

Cox, Murray William (https://experts.colorado.edu/display/fisid_153192)
Senior Instructor; PhD, Texas A&M University

Cox, Rachel
Instructor

D’Mello, Sidney (https://experts.colorado.edu/display/fisid_159117)
Professor; PhD, University of Memphis

Do, Ellen Yi-Luen (https://experts.colorado.edu/display/fisid_159925)
Professor; PhD, Georgia Institute of Technology

Dowell, Robin D. (https://experts.colorado.edu/display/fisid_147779)
Associate Professor; DSc, Washington University

Ehrenfeucht, Andrzej
Professor Emeritus

Eisenberg, Michael A.
Professor; PhD, Massachusetts Institute of Technology

Fiesler, Casey Lynn (https://experts.colorado.edu/display/fisid_155950)
Assistant Professor; PhD, Georgia Institute of Technology

Fischer, Gerhard
Professor Emeritus

Fleming, Ioana (https://experts.colorado.edu/display/fisid_154718)
Instructor; PhD, Johns Hopkins University

Fosdick, Lloyd D.
Professor Emeritus

Frew, Eric W. (https://experts.colorado.edu/display/fisid_134685)
Professor; PhD, Stanford University

Frongillo, Rafael M. (https://experts.colorado.edu/display/fisid_156416)
Assistant Professor; PhD, University of California, Berkeley

Gabow, Harold
Professor Emeritus

Grochow, Joshua A. (https://experts.colorado.edu/display/fisid_158240)
Assistant Professor; PhD, University of Chicago
Gross, Mark D. (https://experts.colorado.edu/display/fisid_100095)
Professor; PhD, Massachusetts Institute of Technology

Gruchalla, Kenny
Assistant Professor Adjunct

Ha, Sangtae (https://experts.colorado.edu/display/fisid_153246)
Assistant Professor; PhD, North Carolina State University

Hajíč, Jan
Professor Adjunct; PhD, Charles University in Prague (Czech Republic)

Hall, David Matthew (https://experts.colorado.edu/display/fisid_147474)
Assistant Professor Adjunct; PhD, University of California, Santa Barbara

Hammer, Matthew A. (https://experts.colorado.edu/display/fisid_156066)
Assistant Professor; PhD, University of Chicago

Han, Richard (https://experts.colorado.edu/display/fisid_122947)
Professor; PhD, University of California, Berkeley

Hauser, Thomas
Associate Professor Adjunct; PhD, Technische Universität München (Germany)

Hayes, Bradley H. (https://experts.colorado.edu/display/fisid_159810)
Assistant Professor; PhD, Yale University

Heckman, Christoffer (https://experts.colorado.edu/display/fisid_155294)
Assistant Professor; PhD, Cornell University

Hoenigman, Rhonda (https://experts.colorado.edu/display/fisid_152997)
Faculty Director, Senior Instructor; PhD, University of Colorado Boulder

Hunter, Lawrence (https://experts.colorado.edu/display/fisid_143568)
Professor; PhD, Yale University

Izraelevitz, Joe (https://experts.colorado.edu/display/fisid_166042)
Assistant Professor; PhD, University of Rochester

Jessup, Elizabeth R. (https://experts.colorado.edu/display/fisid_102065)
Professor, Chair; PhD, Yale University

Kane, Shaun Kevin (https://experts.colorado.edu/display/fisid_154603)
Associate Professor; PhD, University of Washington

Keegan, Brian (https://experts.colorado.edu/display/fisid_158122)
Assistant Professor; PhD, Northwestern University

Keller, Eric Robert (https://experts.colorado.edu/display/fisid_151647)
Assistant Professor; PhD, Princeton University

King, Roger A.
Professor Emeritus

Knox, David Allen (https://experts.colorado.edu/display/fisid_158054)
Lecturer; PhD, University of Colorado Health Sciences Center

Kolla, Alexandra (https://experts.colorado.edu/display/fisid_160001)
Associate Professor; PhD, University of California, Berkeley

Larremore, Daniel B. (https://experts.colorado.edu/display/fisid_159893)
Assistant Professor; PhD, University of Colorado Boulder

Layer, Ryan M. (https://experts.colorado.edu/display/fisid_163567)
Assistant Professor; PhD, University of Virginia

Lehman, Tamara (https://experts.colorado.edu/display/fisid_165649)
Assistant Professor; PhD, Duke University

Leithinger, Daniel (https://experts.colorado.edu/display/fisid_163356)
Assistant Professor; PhD, Massachusetts Institute of Technology

Lewis, Clayton H. (https://experts.colorado.edu/display/fisid_100307)
Professor; PhD, University of Michigan Ann Arbor

Lv, Qin (https://experts.colorado.edu/display/fisid_145832)
Associate Professor, Associate Chair; PhD, Princeton University

Main, Michael G.
Professor Emeritus

Martin, James H. (https://experts.colorado.edu/display/fisid_100495)
Professor; PhD, University of California, Berkeley

Massey, Daniel (https://experts.colorado.edu/display/fisid_159491)
Professor; PhD, University of California, Los Angeles

Mathew, Tarek
Professor Adjunct

McBryan, Oliver
Professor Emeritus

Mishra, Shivakant (https://experts.colorado.edu/display/fisid_118376)
Professor, Associate Chair; PhD, University of Arizona

Monteleoni, Claire Elizabeth (https://experts.colorado.edu/display/fisid_163979)
Associate Professor; PhD, Massachusetts Institute of Technology

Morrison, Rebecca E. (https://experts.colorado.edu/display/fisid_159999)
Assistant Professor

Mozer, Michael C. (https://experts.colorado.edu/display/fisid_105922)
Professor; PhD, University of California, San Diego

Muzny, Grace (https://experts.colorado.edu/display/fisid_159890)
Instructor; MS, Stanford University

Nutt, Gary J.
Professor Emeritus

Palen, Leysia A. (https://experts.colorado.edu/display/fisid_114604)
Professor; PhD, University of California, Irvine

Palmer, Martha (https://experts.colorado.edu/display/fisid_138162)
Professor; PhD, University of Edinburgh (Scotland)

Paradise, Alan (https://experts.colorado.edu/display/fisid_158849)
Instructor; MS, Washington University in St. Louis

Paul, Michael J. (https://experts.colorado.edu/display/fisid_156070)
Assistant Professor; PhD, Johns Hopkins University

Peleg, Orit (https://experts.colorado.edu/display/fisid_159998)
Assistant Professor; PhD, ETH Zürich (Switzerland)

Phillips, Caleb Timothy
Assistant Professor Adjunct

Rahimian, Abtin (https://experts.colorado.edu/display/fisid_159792)
Assistant Professor; PhD, Georgia Institute of Technology
Repennig, Alexander (https://experts.colorado.edu/display/fisid_104946)
Research Professor; PhD, University of Colorado Boulder

Roncone, Alessandro (https://experts.colorado.edu/display/fisid_164509)
Assistant Professor; PhD, Istituto Italiano di Tecnologia (Italy)

Roque, Ricarose (https://experts.colorado.edu/display/fisid_158315)
Assistant Professor; PhD, Massachusetts Institute of Technology

Rozner, Eric John (https://experts.colorado.edu/display/fisid_161485)
Assistant Professor; PhD, University of Texas at Austin

Sanders, Bruce W.
Professor Emeritus

Sankaranarayanan, Sriram (https://experts.colorado.edu/display/fisid_147413)
Associate Professor; PhD, Stanford University

Schnabel, Robert B. (https://experts.colorado.edu/display/fisid_100499)
Professor, Faculty Director; PhD, Cornell University

Schreuder, Willem A. (https://experts.colorado.edu/display/fisid_143834)
Assistant Professor Adjunct

Shapiro, Ben (https://experts.colorado.edu/display/fisid_156418)
Assistant Professor; PhD, Northwestern University

Sumner, Tamara (https://experts.colorado.edu/display/fisid_105742)
Professor; PhD, University of Colorado Boulder

Szafir, Daniel J. (https://experts.colorado.edu/display/fisid_156420)
Assistant Professor; PhD, University of Wisconsin–Madison

Szafir, Danielle N. (https://experts.colorado.edu/display/fisid_156317)
Assistant Professor; PhD, University of Wisconsin–Madison

Tan, Chenhao (https://experts.colorado.edu/display/fisid_158938)
Assistant Professor; PhD, Cornell University

Trivedi, Ashutosh (https://experts.colorado.edu/display/fisid_156589)
Assistant Professor; PhD, University of Warwick (UK)

Tufo, Henry (https://experts.colorado.edu/display/fisid_127040)
Professor; PhD, Brown University

Voida, Amy Kathryn Mitchell (https://experts.colorado.edu/display/fisid_155855)
Assistant Professor; PhD, Georgia Institute of Technology

Voida, Stephen A. (https://experts.colorado.edu/display/fisid_155856)
Assistant Professor; PhD, Georgia Institute of Technology

Vu, Tam Ngoc (https://experts.colorado.edu/display/fisid_159772)
Assistant Professor; PhD, Rutgers University

Waite, William M.
Professor Emeritus

Ward, Wayne Hinson (https://experts.colorado.edu/display/fisid_114680)
Research Professor; PhD, University of Colorado Boulder

Winklmann, Karl A.
Senior Instructor Emeritus

Wong, Tony (https://experts.colorado.edu/display/fisid_159678)
Instructor; PhD, University of Colorado Boulder

Wustrow, Eric A. (https://experts.colorado.edu/display/fisid_156419)
Assistant Professor; BE, University of Michigan Ann Arbor

Yeh, Tom (https://experts.colorado.edu/display/fisid_151584)
Assistant Professor; PhD, Massachusetts Institute of Technology

Zagrodzki, Maciej
 Instructor; MSc, Colorado School of Mines

Courses

CSCI 5000 (1) Introduction to the Computer Science Research-Based MS Program
Instructs new research-based MS students in Computer Science how to become an effective member in terms of research, teaching, and presentation, and potentially advancing to the PhD program. Makes students aware of formal requirements, educational objectives, and research themes. Provides evaluative criteria and guidelines for all objectives to be achieved.
Requisites: Restricted to graduate student Computer Sciences (CSEN) students only.
Additional Information: Departmental Category: General Computer Science

CSCI 5040 (3) Professional Masters Project 1
First class in a two semester cycle. Focuses on applied best practice in all facets of software engineering in industry and the application of those practices. Students are part of a development team involved in a two-semester project. Each student has a specific role on the project, and all will be responsible for some level of actual software development. The first semester focuses on design, requirements, and prototyping and is based on common waterfall project practices with gate reviews and project artifacts. Testing, soft skills for teamwork, project management, and other supporting aspects will be driven throughout the semester. The outcome of the two-semester cycle is a final project delivery of a software product for an institutional or industrial partner and/or for entry into software development competitions.
Requisites: Restricted to graduate student Computer Sciences (CSEN) students only.

CSCI 5100 (1) Introduction to the Computer Science Research-Based MS Program
Instructs new research-based MS students in Computer Science how to become an effective member in terms of research, teaching, and presentation, and potentially advancing to the PhD program. Makes students aware of formal requirements, educational objectives, and research themes. Provides evaluative criteria and guidelines for all objectives to be achieved.
Requisites: Restricted to graduate student Computer Sciences (CSEN) students only.

CSCI 5114 (3) Practical Algorithmic Complexity
When coming across an algorithmic problem, how do we think about how hard it is? Beyond just how much time or memory it takes, computational complexity offers a plethora of concepts for understanding this fundamental question. This leads to the appropriate choice of algorithm for the job, the development of new algorithms, and understanding the role of algorithmic complexity in natural settings such as biology and physics.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4114
Requisites: Restricted to graduate students only.
CSCI 5135 (3) Computer-Aided Verification
Covers two-level and multilevel minimization, optimization via expert systems, algebraic and Boolean decomposition, layout methodologies, state assignment, encoding and minimization, silicon compilation.
Equivalent - Duplicate Degree Credit Not Granted: ECEN 5139
Requisites: Restricted to graduate students only.
Recommended: Prerequisites ECEN 2703 and general proficiency in discrete mathematics and programming.
Additional Information: Departmental Category: Programming Languages

CSCI 5140 (2) CLASIC Capstone
In this capstone to the Computational Linguistics, Analytics, Search and Informatics (CLASIC) professional master¿s program, we will review each student¿s internship project and prepare presentations and technical reports based on those internships. Students will present their work on the annual Industry Day or at an Advisory Board meeting to industry representatives. They will also submit a paper to a relevant conference or workshop. Previously offered as a special topics course.
Requisites: Restricted to students in the Computational Linguistics, Analytics, Search and Informatics (CLASIC) program only.
Recommended: It is recommended that this course be taken after the CLASIC internship has been completed.

CSCI 5229 (3) Computer Graphics
Studies design, analysis and implementation of computer graphics techniques. Topics include interactive techniques, 3D viewing and models, clipping, transformations, projection, removal of hidden surfaces, lighting, textures and shadows. Knowledge of basic linear algebra is required.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4229
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Graphics

CSCI 5239 (3) Advanced Computer Graphics
Studies design, analysis and implementation of advanced computer graphics techniques. Topics include shaders, using the GPU for high performance computing, graphics programming on embedded devices such as mobile phones; advanced graphics techniques such as ray tracing.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4239
Requisites: Requires prerequisite course of CSCI 5229 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Graphics

CSCI 5250 (3) Computer Science: The Canon
Explores the "great works" of computer science through intensive reading and discussion. Readings include works by Babbage, Turing, Von Neumann, Goedel, Shannon and Minsky, among others. Does not count toward breadth requirement for Computer Science MS/ME degree.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4250
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science

CSCI 5253 (3) Datacenter Scale Computing - Methods, Systems and Techniques
Covers the primary problem solving strategies, methods and tools needed for data-intensive programs using large collections of computers typically called "warehouse scale" or "data-center scale" computers. Examines methods and algorithms for processing data-intensive applications, methods for deploying and managing large collections of computers in an on-demand infrastructure and issues of large-scale computer system design.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4253
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 5273.
Additional Information: Departmental Category: Operating Systems and Hardware

CSCI 5254 (3) Convex Optimization and Its Applications
Discuss basic convex analysis (convex sets, functions and optimization problems), optimization theory (linear, quadratic, semidefinite and geometric programming; optimality conditions and duality theory), some optimization algorithms (descent methods and interior-point methods), basic applications (in signal processing, control, communications, networks, statistics, machine learning, circuit design and mechanical engineering, etc.), and some advanced topics (distributed decomposition, exact convex relaxation, parsimonious recovery).
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Theory of Computation

CSCI 5273 (3) Network Systems
Focuses on design and implementation of network programs and systems, including topics in network protocols, architectures, client-server computing, software-driven networking, and other contemporary network hardware-software system design and programming techniques. Familiarity with C and Unix is required.
Equivalent - Duplicate Degree Credit Not Granted: ECEN 5273
Requisites: Restricted to graduate students only.
Recommended: Prerequisites CSCI 4273 and CSCI 4573.
Additional Information: Departmental Category: Operating Systems and Hardware

CSCI 5302 (3) Advanced Robotics
Exposes students to current research topics in the field of robotics and provides hands-on experience in solving a grand challenge program.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4302
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 3302 or instructor consent required.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5314 (3) Dynamic Models in Biology
Surveys computational and mathematical modeling to illuminate biological processes. Students work together to learn to build and analyze models using a variety of numerical tools, tackle meaningful biological problems, and communicate effectively across disciplines. Specific topics: Langevin dynamics of protein folding, agent-based models, finite difference models of organismal growth, stochastic and deterministic cellular automata game of life, models of behavior.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4314
Requisites: Restricted to graduate students only.
Recommended: Prerequisite comfort with mathematics and/or programming experience, and more advanced understanding (upper undergraduate level) of any relevant discipline.
Additional Information: Departmental Category: Theory of Computation
CSCI 5322 (3) Algorithmic Human-Robot Interaction
Creating autonomous systems that interact with humans requires the synthesis of insights from a variety of disciplines. This course aims to provide students with the algorithms, models, and frameworks that form the building blocks required for developing intelligent autonomous systems that perform useful tasks while interacting with, coordinating with, co-existing with, or otherwise assisting humans. Previously offered as a special topics course.
Requisites: Restricted to graduate students only.

CSCI 5340 (3) Startup Essentials: Entrepreneurial Projects in Computing
Provides students with the tools to be successful technical co-founders of their own startups. Explores the initial stages of founding a startup, including team formation, idea validation, pivoting and pitching, while employing an iterative methodology. Student teams will develop a minimum viable product, pitch their final startup concept and be evaluated on product-market fit. CS coding concepts relevant for startups, including potentially cloud programming, mobile programming and agile software engineering, will be taught. Does not satisfy breadth requirement.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4348
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science

CSCI 5350 (3) Entrepreneurial Projects II
Follows CSCI 5340. In the second semester of this entrepreneurial project capstone, student teams will seek to find market traction for a high-fidelity Minimum Viable Product (MVP), software and/or hardware, that they will develop as part of their startup project. Teams will further learn to incorporate principles of marketing, business finance and legal issues into the business model for their startup concept. Does not satisfy breadth requirement.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4358
Requisites: Requires a prerequisite course of CSCI 5340 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science

CSCI 5352 (3) Network Analysis and Modeling
Examines modern techniques for analyzing and modeling the structure and dynamics of complex networks. Focuses on statistical algorithms and methods, and emphasizes model interpretability and understanding the processes that generate real data. Applications are drawn from computational biology and computational social science. No biological or social science training is required.
Requisites: Restricted to graduate students only.
Recommended: Prerequisites CSCI 3104 and APPM 3570.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5402 (3) Research Methods in Human-Robot Interaction
Introduces students to the field of human-robot interaction (HRI). Covers HRI theory, principles, methodologies, and applications with links to robotics, artificial intelligence, human factors, human-computer interaction, design, cognitive psychology, education and other domains. Coursework includes readings from state-of-the-art in HRI research, team exercises and problem-solving sessions, and implementation and evaluation of a human-robot interaction systems for specific applications.
Equivalent - Duplicate Degree Credit Not Granted: ATLS 5402
Requisites: Restricted to graduate students only.

CSCI 5403 (3) Introduction to CyberSecurity for a Converged World
Introduces core concepts in cybersecurity including confidentiality, integrity, authentication, risk management, and adversarial thinking. The concepts will be applied to both traditional information technology (IT) systems and cyber physical systems (CPS). At the conclusion of the course, students should have a solid foundation in cybersecurity and hands-on experience.
Equivalent - Duplicate Degree Credit Not Granted: CYBR 5300
Requisites: Requires prerequisite CSCI 3753 or CSCI 4273 (both minimum grade C). Restricted to graduate students only.

CSCI 5413 (3) Computer Security and Ethical Hacking
Teaches basic exploit design and development through hands-on experimentation and testing. Uses a controlled environment to give students a “playground” in which to test penetration skills that are normally not allowed on live networks.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4413
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Operating Systems and Hardware

CSCI 5417 (3) Information Retrieval Systems
Addresses practical issues in the design, implementation and analysis of modern information retrieval systems. The major focus is on Web-based applications including ad hoc retrieval, classification, and clustering. Introduces the use of open source retrieval systems, standard evaluation metrics and gold-standard evaluation collections.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Database Systems

CSCI 5423 (3) Biologically-inspired Multi-Agent Systems
Explores the principles and emergent properties of collective dynamics through computational modeling and theory. Focuses on multi-agent systems using insights from biology, like the self-assemble of cells and insect colony behavior. Topics include designing swarm intelligence, networked agents, cellular computing and self-assembly, optimization, synchronization, and evolutionary computation. Uses cross-discipline research developments to practice applied techniques. Biology background is not required.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 2270 and basic knowledge of programming.

CSCI 5434 (3) Probability for Computer Science
This course will introduce computer science students to topics in probability and statistics that will be useful in other computer science courses. Basic concepts in probability will be taught from an algorithmic and computational point of view, with examples drawn from computer science.
Requisites: Requires prerequisite courses of APPM 1360 or MATH 2300 and CSCI 2824 or MATH 2001 or ECEN 2703 (all minimum grade D-).

CSCI 5444 (3) Introduction to Theory of Computation
Reviews regular expressions and finite automata. Studies Turing machines and equivalent models of computation, the Chomsky hierarchy, context-free grammars, push-down automata, and computability.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Theory of Computation
CSCI 5446 (3) Chaotic Dynamics
Explores chaotic dynamics theoretically and through computer simulations. Covers the standard computational and analytical tools used in nonlinear dynamics and concludes with an overview of leading-edge chaos research. Topics include time and phase-space dynamics, surfaces of section, bifurcation diagrams, fractal dimension and Lyapunov exponents.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4446 and ECEN 4423 and ECEN 5423
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Numerical Computation

CSCI 5448 (3) Object-Oriented Analysis and Design
An applied analysis and design class addressing the use of object-oriented techniques. Topics include domain modeling, use cases, architectural design and modeling notations. Students apply the techniques in analysis and design projects.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4448
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Software Engineering

CSCI 5454 (3) Design and Analysis of Algorithms
Techniques for algorithm design, analysis of correctness and efficiency; divide and conquer, dynamic programming, probabilistic methods, advanced data structures, graph algorithms, etc. Lower bounds, NP-completeness, intractability.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 2270 or equivalent.

Additional Information: Departmental Category: Theory of Computation

CSCI 5502 (3) Data Mining
Introduces basic data mining concepts and techniques for discovering interesting patterns hidden in large-scale data sets, focusing on issues relating to effectiveness and efficiency. Topics covered include data preprocessing, data warehouse, association, classification, clustering, and mining specific data types such as time-series, social networks, multimedia, and Web data.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4502
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5514 (3) Algorithms for Whole Genome Sequence Analysis
Explore the algorithms that have been developed to assemble and analyze genome sequencing data. Genome sequencing produces vast and complex data that are intractable without efficient algorithms. This course covers the core data structures and algorithms which form the basis for research in topics ranging from evolution to the cause and treatment of many diseases, including cancer. Topics include string matching, indexing, compression, and succinct data structures. No prior knowledge of biology, DNA, or genetics is required.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite basic understanding of complexity analysis, core algorithms (for example, sort) and data structures (for example, graphs).

CSCI 5525 (3) Compiler Construction
Introduces the principles and techniques for compiling high-level programming languages to assembly code. Topics include parsing, instruction selection, register allocation, and compiling high-level features such as polymorphism, first-class functions, and objects. Students will build a complete compiler for a simple language.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4555 and ECEN 4553 and ECEN 5523
Requisites: Restricted to graduate students only.
Recommended: Prerequisites CSCI 3155 and CSCI 2400 or ECEN 3350.
Additional Information: Departmental Category: Programming Languages

CSCI 5535 (3) Fundamental Concepts of Programming Languages
Considers concepts common to a variety of programming languages–how they are described (both formally and informally) and how they are implemented. Provides a firm basis for comprehending new languages and gives insight into the relationship between languages and machines.
Equivalent - Duplicate Degree Credit Not Granted: ECEN 5533
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 3155 or instructor consent required.
Additional Information: Departmental Category: Programming Languages

CSCI 5548 (3) Software Engineering of Standalone Programs
Applies engineering principles to phases of software product development, project planning, requirements definition, design, implementation, validation and maintenance. Emphasizes practical methods for communicating and verifying definitions and designs: prototyping, inspections and modeling. Includes relation to RTS and object-oriented programming.
Equivalent - Duplicate Degree Credit Not Granted: ECEN 5543
Requisites: Restricted to graduate students only.
Recommended: Prerequisites CSCI 1300 and CSCI 2270 or instructor consent required.
Additional Information: Departmental Category: Software Engineering

CSCI 5550 (3) Designing for Defense
Designing for Defense/Hacking for Defense is a national service program running at leading research universities across the country. Interdisciplinary teams chosen by competitive selection work on real-world national security challenges, in close contact with national security agencies. Teams employ the Lean Launchpad entrepreneurship methodology to develop engineering and business concepts to solve real world challenges for special operations forces, the intelligence community, and other government agencies. Winning teams are eligible for real-world capital investment.
Equivalent - Duplicate Degree Credit Not Granted: COEN 5550 and CYBR 5550
Requisites: Restricted to graduate students only.
Grading Basis: Letter Grade

CSCI 5557 (3) Advanced Operating Systems
Intended to create a foundation for operating systems research or advanced professional practice. Examines the design and implementation of a number of research and commercial operating systems and their components, system organization and structure, threads, communication and synchronization, virtual memory, distribution, file systems, security and authentication, availability and Internet services.
Equivalent - Duplicate Degree Credit Not Granted: ECEN 5573
Requisites: Requires prerequisite course of CSCI 2400 and CSCI 3753 (all minimum grade C). Restricted to graduate students only.
Additional Information: Departmental Category: Operating Systems and Hardware
CSCI 5576 (4) High-Performance Scientific Computing
Introduces computing systems, software and methods used to solve large-scale problems in science and engineering. Students use high-performance workstations and a supercomputer. First course in a two-semester sequence.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4576
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Numerical Computation

CSCI 5593 (3) Advanced Computer Architecture
Provides a broad-scope treatment of important concepts in the design and implementation of high-performance computer systems. Discusses important issues in the pipelining of a machine and the design of cache memory systems. Also studies current and historically important computer architectures.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4616, ATLS 4616, ATLS 5616
Requisites: Requires prerequisite course of CSCI 2270 or CSCI 2275 (minimum grade C-). Restricted to graduate students only.

CSCI 5606 (3) Principles of Numerical Computation
Highlights computer arithmetic, solution of linear systems, least-squares approximations, nonlinear algebraic equations, interpolation, and quadrature.
Requisites: Restricted to graduate students only.
Recommended: Prerequisites CSCI 3656 and three semesters of calculus or equivalent.
Additional Information: Departmental Category: Numerical Computation

CSCI 5608 (3) Software Project Management
Presents topics and techniques critical to the management of software product development, including estimating, planning, quality, tracking, reporting, team organization, people management and legal issues. Gives special attention to problems unique to software projects.
Requisites: Restricted to graduate students only.
Recommended: Prerequisites ECEN 4583 and CSCI 5548 and CSCI 4318 or equivalent industrial experience.
Additional Information: Departmental Category: Software Engineering

CSCI 5616 (3) Introduction to Virtual Reality
Introduces students to the field of virtual reality (VR). Covers the historical development of virtual reality technologies and virtual reality as a research field, the mathematics of 3D coordinate systems, fundamental principles, algorithms, and design patterns in developing interactive virtual environments, the perceptual science behind mixed reality technologies, and libraries and tools for creating VR experiences. Previously offered as a special topics course.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4616, ATLS 4616, ATLS 5616
Requisites: Requires prerequisite course of CSCI 2270 or CSCI 2275 (minimum grade C-). Restricted to graduate students only.

CSCI 5622 (3) Machine Learning
Trains students to build computer systems that learn from experience. Includes the three main subfields: supervised learning, reinforcement learning and unsupervised learning. Emphasizes practical and theoretical understanding of the most widely used algorithms (neural networks, decision trees, support vector machines, Q-learning). Covers connections to data mining and statistical modeling. A strong foundation in probability, statistics, multivariate calculus, and linear algebra is highly recommended.
Requisites: Requires prerequisite course of CSCI 2820 or CSCI 3656 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5636 (3) Numerical Solution of Partial Differential Equations
Focuses on discretization techniques such as finite difference, finite element and finite volume methods, and parallel solution algorithms such as Krylov subspace methods, domain decomposition and multilevel methods.
Requisites: Requires prerequisite course of CSCI 2820 or CSCI 3656 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Numerical Computation

CSCI 5646 (3) Numerical Linear Algebra
Offers direct and iterative solutions of linear systems. Also covers eigen value and eigenvector calculations, error analysis, and reduction by orthogonal transformation. A sound knowledge of basic linear algebra, experience with numerical computation, and programming experience is required.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Numerical Computation

CSCI 5654 (3) Linear Programming
Requisites: Restricted to graduate students only.
Recommended: Prerequisite linear algebra.
Additional Information: Departmental Category: Theory of Computation

CSCI 5673 (3) Distributed Systems
Examines systems that span multiple autonomous computers. Topics include system structuring techniques, scalability, heterogeneity, fault tolerance, load sharing, distributed file and information systems, naming, directory services, resource discovery, resource and network management, security, privacy, ethics and social issues.
Equivalent - Duplicate Degree Credit Not Granted: ECEN 5673
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 5573 or a course in computer networks.
Additional Information: Departmental Category: Operating Systems and Hardware

CSCI 5676 (3) Numerical Optimization
Focuses on computational methods for solution of unconstrained and some constrained optimization problems, nonlinear least-squares problems and systems of nonlinear equations. Formerly CSCI 6676.
Requisites: Requires prerequisite course of CSCI 2820 or CSCI 3656 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Numerical Computation
CSCI 5714 (3) Formal Languages
Explores context-free languages: pumping lemma and variants, closure properties, and decision properties. Involves parsing algorithms, including general and special languages, e.g., LR. Additional topics chosen by instructor.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 5444 or instructor consent required.
Additional Information: Departmental Category: Theory of Computation

CSCI 5722 (3) Computer Vision
Explores algorithms that can extract information about the world from images or sequences of images. Topics covered include: imaging models and camera calibration, early vision (filters, edges, texture, stereo, optical flow), mid-level vision (segmentation, tracking), vision-based control and object recognition.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite probability, multivariate calculus and linear algebra.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5753 (3) Computer Performance Modeling
Presents a broad range of system measurement and modeling techniques, emphasizing applications to computer systems. Topics include system measurement, work load characterization and analysis of data; design of experiments; simulation; and queuing theory and queuing network models.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4753 and ECEN 4753 and ECEN 5753
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Operating Systems and Hardware

CSCI 5802 (1) Data Science Team Companion Course
Gives students hands-on experience applying data science techniques and machine learning algorithms to real-world problems. Students work in small teams on internal challenges, many of which will be sponsored by local companies and organizations and will represent the university in larger teams for external challenges at the national and global level, such as those hosted by Kaggle. Students will be expected to participate in both internal and external challenges, attend meetings and present short presentations to the group when appropriate. Instructor consent required.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4802
Repeatable: Repeatable for up to 3.00 total credit hours.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5809 (3) Computer Animation
Develops a firm understanding of the general principles of computer animation. Lectures cover the creation of models, materials, textures, surfaces, and lighting. Path and key frame animation, particle dynamics, and rendering are introduced. Students are assigned a number of animation tutorials to carry out.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4809 and ATLS 4809 and ATLS 5809
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Graphics

CSCI 5817 (3) Database Systems
Provides an advanced treatment of basic database concepts.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 3753.
Additional Information: Departmental Category: Database Systems

CSCI 5822 (3) Probabilistic Models of Human and Machine Learning
Introduces a set of modeling techniques that have become a mainstay of modern artificial intelligence, cognitive science and machine learning research. These models provide essential tools for interpreting the statistical structure of large data sets and for explaining how intelligent agents analyze the vast amount of experience that accumulates through interactions with an unfamiliar environment.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite undergraduate course in probability and statistics.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5828 (3) Foundations of Software Engineering
Provides an introduction to software engineering concepts and techniques. Topics include the history of software engineering, fundamental software engineering principles and theory, software life cycles, software testing, and the design and implementation of concurrent and large-scale software systems.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Software Engineering

CSCI 5832 (3) Natural Language Processing
Explores the field of natural language processing as it is concerned with the theoretical and practical issues that arise in getting computers to perform useful and interesting tasks with natural language. Covers the problems of understanding complex language phenomena and building practical programs.
Equivalent - Duplicate Degree Credit Not Granted: LING 5832
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5839 (3) User-Centered Design and Development 1
Develops the skills and practices necessary to apply user-centered approaches to software requirements analysis, and the design and evaluation of computer applications.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Graphics

CSCI 5849 (3) Input, Interaction, and Accessibility
Explores input and interaction techniques, with an emphasis on universal design and alternative interfaces. Students will explore traditional input methods such as keyboard and mouse input, and alternative techniques such as voice and eye gaze. Students will conduct performance evaluations of existing techniques, and prototype new interaction methods. Students will design technologies to support people with varying abilities and disabilities.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4849
Requisites: Requires prerequisite of CSCI 3002 or CSCI 5839 (all require minimum grade of B). Restricted to graduate students only.

CSCI 5854 (3) Theoretical Foundations of Autonomous Systems
Covers topics such as control theory, optimization techniques, and machine learning. Students will learn how to design and implement autonomous systems using a variety of tools and techniques. The course will cover both theoretical foundations and practical applications of autonomous systems.
Requisites: Requires prerequisite course of CSCI 3434 or ECEN 3300 (minimum grade C). Restricted to graduate students only.
Additional Information: Departmental Category: Theory of Computation
CSCI 5880 (3) Interactive Machine Learning for Customizable and Expressive Interfaces
Introduces students to techniques for applying machine learning in the development of customizable human-computer interfaces. Students will learn to process a wide variety of input data (e.g. video and accelerometer streams), using different machine learning algorithms to detect semantically meaningful events that can afford the construction of new interactive systems. They will complete substantial projections within the domains of assistive or creative technologies. Does not fulfill Breadth Requirement for CSEN graduate students.
Equivalent - Duplicate Degree Credit Not Granted: CSCI 4889, ATLS 4889 and ATLS 5880
Requisites: Restricted to graduate students only.
Grading Basis: Letter Grade
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5900 (1-6) Master's Level Independent Study
Provides opportunities for independent study at the master's level.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to Computer Science (CSEN) graduate students or Computer Science Concurrent Degree majors only.
Additional Information: Departmental Category: General Computer Science

CSCI 5919 (3) HCC Survey and Synthesis: Foundations and Trajectories
Examines interdisciplinary field of human-computer interaction through a comprehensive content and historical survey. Considers new trajectories of inquiry and how the field merges with others. "Social computing" is emphasized as a central topic. Students across disciplines will find the course foundational for understanding human-centered technology matters, including computer scientists; social scientists; and business and media arts students.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Graphics

CSCI 5922 (3) Neural Networks and Deep Learning
Introduces modern approaches to machine learning using neural networks. Neural nets, popular in the early 1990s, have undergone a resurgence due to significant advances in computing power and the availability of very large data sets. Now rechristened 'deep learning', the field has produced state-of-the-art results in a range of artificial intelligence problems, including vision, speech and natural language processing.
Requisites: Restricted to graduate students only.
Grading Basis: Letter Grade
Additional Information: Departmental Category: Artificial Intelligence

CSCI 5929 (3) HCC Survey and Synthesis: New Disciplinary Directions
Studies recent advances in human-computer interaction through critical analysis of influential papers and self-guided research. Examines new paradigms in input, output, and visualization for technology design and interaction. Considers innovative methods to assess various population design and technological needs. Studies in computer-related fields, social science, business, media arts and communications benefit learning about human-centered computing research.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 5919.
Additional Information: Departmental Category: Graphics

CSCI 6000 (1) Introduction to the Computer Science PhD Program
Instructs new Ph.D students in Computer Science how to obtain a Ph.D and how to become an effective member of the computer science research community. Makes students aware of formal requirements, educational objectives, and research themes. Provides evaluative criteria and guidelines for all objectives to be achieved.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science

CSCI 6100 (1) Computer Science Colloquium
Learn about innovative research and teaching in computer science by attending talks and discussions by leading researchers and educators. Learn professional presentation skills and etiquette of participating in scientific research presentations. Students may attend during any term but they need to be signed up for this course during the term they wish to earn that credit.
Requisites: Restricted to Computer Science (CSCI) PhD. students only.

CSCI 6200 (1) Computer Science PhD Career Development
Learn how to make the most of your CS PhD by understanding and preparing for a career as a computer science research in academia, industry, and government. Students need to take this class once they complete Preliminary Exam and before their proposal defense.
Requisites: Requires prerequisite course of CSCI 6000 (minimum grade D.). Restricted to Computer Science (CSCI) MS and PhD students only.
Grading Basis: Pass/Fail

CSCI 6268 (3) Foundations of Computer and Network Security
Studies methods to protect information, and the ability to process and move information, from theft, misuse, tampering, destruction and unauthorized access. Introduces foundational topics of computer and network security, including security models, cryptography and authentication protocols.
Equivalent - Duplicate Degree Credit Not Granted: TLEN 5550
Requisites: Requires prerequisite course of CSCI 5273 (minimum grade B). Restricted to graduate students only.

CSCI 6302 (3) Speech Recognition and Synthesis
Introduction to automatic speech recognition and understanding, conversational agents, dialogue systems, and speech synthesis/text-to-speech. Topics include the noisy channel model, Hidden Markov Models, A* and Viterbi decoding, language modeling (N-grams, entropy), concatenative synthesis, text normalization, dialogue and conversation modeling.
Requisites: Restricted to graduate students only.
Recommended: Prerequisites CSCI 5832 or LING 5200 or instructor consent required.
Additional Information: Departmental Category: Software Engineering

CSCI 6402 (3) Issues and Methods in Cognitive Science
Interdisciplinary introduction to cognitive science, examining ideas from cognitive psychology, philosophy, education, and linguistics via computational modeling and psychological experimentation. Includes philosophy of mind; learning; categorization; vision and mental imagery; consciousness; problem solving; decision making, and game-theory; language processing; connectionism. No background in Computer Science will be presumed.
Equivalent - Duplicate Degree Credit Not Granted: EDUC 6504 and LING 6200 and PHIL 6310 and PSYC 6200 and SLHS 6402
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 6504 and TLEN 5550
CSCI 6502 (3) Big Data Analytics: Systems, Algorithms, and Applications
This course studies state-of-the-art practice and research on efficient and effective systems and algorithms design for managing and exploring massive amounts of digital data in various application domains. The course takes an integrated approach that studies all three aspects of big data analytics: systems, algorithms, and applications. Specifically, this course covers big data systems for MapReduce, NoSQL, stream processing, deep learning, mobile/wearable/IoT sensing, as well as practical use of indexing, sketching, recommendation, graph, and deep learning algorithms. Domain-specific data management and analysis, such as those in online social networks, scientific discovery, business intelligence, health informatics, urban computing, are also covered.
Requisites: Restricted to graduate students only.

CSCI 6686 (3) Numerical Methods for Constrained Optimization
Covers computational methods for constrained optimization. Topics include basic theory, methods for quadratic programming, active set strategies for linear constraints, and penalty and successive quadratic programming methods for nonlinearly constrained problems.
Requisites: Requires prerequisite course of CSCI 5606 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Numerical Computation

CSCI 6700 (1-4) Current Topics in Computer Science
Topics selected by instructor. Possible topics are system design, measurement and evaluation, simulation, mathematical modeling, and parallelism.
Repeatable: Repeatable for up to 8.00 total credit hours. Allows multiple enrollment in term.
Requisites: Requires prerequisite course of CSCI 5573 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science

CSCI 7050 (1-6) Master’s Thesis
Requisites: Restricted to Computer Science (CSEN) graduate students or Computer Science Concurrent Degree majors only.
Grading Basis: Pass/Fail
Additional Information: Departmental Category: General Computer Science

CSCI 7070 (1-4) Topics in Computer Science
Covers research topics of current interest in computer science that do not fall into a standard subarea.
Repeatable: Repeatable for up to 8.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science

CSCI 7123 (3) Topics in Operating Systems
Topics selected by instructor. Possible topics are system design, measurement and evaluation, simulation, mathematical modeling, and parallelism.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Requires prerequisite course of CSCI 5606 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Operating Systems and Hardware

CSCI 7135 (1-3) Topics in Programming Languages
Topics selected by instructor. Possible topics are syntax, semantics, metacompilers, compiler design, and translator writing systems. Department consent required.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Programming Languages

CSCI 7143 (3) Topics in Computer Systems
Topics selected by instructor. Possible topics are online systems, multiprocessning, microprogramming, architecture, data communications, and computing networks. Department consent required.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Operating Systems and Hardware

CSCI 7154 (3) Topics in Theory of Computation
Selected topics of current interest in theory of computation.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Requires prerequisite course of CSCI 5454 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Theory of Computation
CSCI 7176 (3) Topics in Numerical Computation
Topics selected by instructor. Possible topics are numerical linear algebra, solution of differential equations, nonlinear algebra and optimization, data fitting, linear and nonlinear programming, and solution of large problems. Department consent required.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Numerical Computation

CSCI 7222 (3) Topics in Nonsymbolic Artificial Intelligence
Topics vary from year to year. Possible topics include human and machine vision, signal and speech processing, artificial life, mathematical foundations of connectionism, and computational learning theory.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to graduate students only.
Recommended: Prerequisite CSCI 5622 or instructor consent required.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 7412 (2) Cognitive Science Research Practicum
Independent, interdisciplinary research project in cognitive science for advanced graduate students pursuing a joint Ph.D in an approved core discipline and cognitive science. Research projects integrate at least two areas within the cognitive sciences: psychology, computer science, linguistics, education, philosophy. Students need commitments from two mentors for their project.
Equivalent - Duplicate Degree Credit Not Granted: EDUC 6506 and LING 7415 and PHIL 7415 and PSYC 7415 and SLHS 7418
Requisites: Requires a prerequisite course of CSCI 6402 or EDUC 6504 or LING 6200 or PHIL 6310 or PSYC 6200 (minimum grade B). Restricted to graduate students only.
Recommended: Prerequisite EDUC 6505.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 7422 (2) Cognitive Science Research Practicum 2
Independent, interdisciplinary research project in cognitive science for advanced graduate students pursuing a joint Ph.D in an approved core discipline and cognitive science. Research projects integrate at least two areas within the cognitive sciences: psychology, computer science, linguistics, education, philosophy. Students need commitments from two mentors for their project.
Equivalent - Duplicate Degree Credit Not Granted: EDUC 6516 and LING 7425 and PHIL 7425 and PSYC 7425 and SLHS 7428
Requisites: Requires a prerequisite course of LING 7415 or PSYC 7415 or CSCI 7412 or EDUC 6506 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 7565 (3) Computational Phonology and Morphology
Surveys of the main approaches and central questions related to computational modeling and learning of morphology and phonology. We consider questions related to learnability of phonology/morphology, machine learning implementations, and linguist-driven grammar modeling.

CSCI 7717 (3) Topics in Database Systems
Studies topics such as distributed databases, database interfaces, data models, database theory, and performance measurement in depth.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Requires prerequisite course of CSCI 5817 (minimum grade B). Restricted to graduate students only.
Additional Information: Departmental Category: Database Systems

CSCI 7772 (1) Topics in Cognitive Science
Reading of interdisciplinary innovative theories and methodologies of cognitive science. Students participate in the ICS Distinguished Speakers series that hosts internationally recognized cognitive scientists who share and discuss their current research. Session discussions include analysis of leading edge and controversial new approaches in cognitive science.
Equivalent - Duplicate Degree Credit Not Granted: EDUC 7775 and LING 7775 and PHIL 7810 and PSYC 7775 and SLHS 7775
Repeatable: Repeatable for up to 4.00 total credit hours.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: Artificial Intelligence

CSCI 7818 (3) Topics in Software Engineering
Studies selected topics of current interest in software engineering. Department consent required.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science

CSCI 8990 (1-10) Doctoral Dissertation
Investigates some specialized field of computer science. Approved and supervised by faculty members.
Repeatable: Repeatable for up to 30.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to graduate students only.
Additional Information: Departmental Category: General Computer Science