**ELECTRICAL ENGINEERING - MASTER OF SCIENCE (MS)**

The Department of Electrical, Computer & Energy Engineering (ECEE) offers degree options tailored to both working engineers looking to advance their careers and to those looking to pursue a career in academia. Research is concentrated in six broad areas:

- optics, nanostructures and bioengineering
- communications and signal processing
- computer engineering
- systems and controls
- electromagnetics, RF and microwaves
- power electronics

For more information, visit the department’s Prospective Students [webpage](http://www.colorado.edu/ecee/graduate-program/prospective-students/).

**Distance Education Option**

Students can take individual courses toward a master's degree or graduate certificate through distance education (online). For more information, connect with the individual graduate program directly.

**Coursera Option**

The Master of Science in Electrical Engineering is also available as a completely online master's degree ([https://www.colorado.edu/ecee/msee/](https://www.colorado.edu/ecee/msee/)) through the Coursera platform.

**Bachelor's–Accelerated Master's Degree Program**

Students may earn this degree as part of the Bachelor’s–Accelerated Master's (BAM) degree program, which allows currently enrolled CU Boulder undergraduate students the opportunity to earn a bachelor's and master's degree in a shorter period of time.

For more information, see the Accelerated Master's [tab](http://www.colorado.edu/ecee/undergraduate-program/degrees/bachelors-accelerated-masters-degree/) for the associated bachelor’s degree(s):

- Electrical and Computer Engineering - Bachelor of Science (BS) ([catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/electrical-computer-energy-engineering/electrical-computer-engineering-bachelor-science-bs/#acceleratedmasterstex](catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/electrical-computer-energy-engineering/electrical-computer-engineering-bachelor-science-bs/#acceleratedmasterstex))
- Electrical Engineering - Bachelor of Science (BS) ([catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/electrical-computer-energy-engineering/electrical-engineering-bachelor-science-bs/#acceleratedmasterstex](catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/electrical-computer-energy-engineering/electrical-engineering-bachelor-science-bs/#acceleratedmasterstex))

**Requirements**

- All MS students must complete a total of 30 credit hours of coursework (including thesis hours, if applicable) with a grade of C or better and a cumulative GPA of at least 3.00.
- At least 24 credit hours must be completed at the 5000 level or above, and at least 18 of those credits must be in sufficiently technical ECEN courses.
- Optionally, maximally 6 credit hours may be at the 4000+ level. However, all course work from ECEN, TLEN/CYBR, EMEN and ATLS must solely be at the 5000+ level.

For more information, visit the department’s Master of Science ([http://www.colorado.edu/ecee/graduate-program/degrees-programs/master-science/](http://www.colorado.edu/ecee/graduate-program/degrees-programs/master-science/)) webpage.

**Degree Plans**

**Plan I: Thesis Option**

Students must complete 4–6 credit hours of MS thesis. The total number of combined hours of independent study and thesis research shall not exceed 9 hours. The Plan I project culminates with an oral presentation and written thesis.

**Plan II: Non-Thesis Option**

A maximum of 6 credit hours of independent study can be used toward the 30-credit-hour requirement. No thesis is required, and there is no cumulative examination.

**Time Limit**

All degree requirements must be completed within four years of the date of commencing coursework. Most students complete the degree in two years.

1 "Sufficiently technical" usually means the course requires at least one technical pre-requisite course, and that its primary focus is engineering/mathematical problem-solving rather than having a policy-based focus.