ROBOTICS - MASTER OF SCIENCE (MS)

The Master of Science in Robotics provides advanced training and study in robotics-related topics consistent with the program focus on autonomy and AI, field robotics, human-robot interaction, smart materials, security, controls and estimation, bio-inspired systems and advanced manufacturing.

The program provides a strong foundation in mathematics and engineering, while also allowing flexibility to select courses across departments to achieve the breadth and depth required for research advances beyond the state of the art. Students will achieve their educational goals through a combination of cross-disciplinary coursework and research under the supervision of one or more of the program’s faculty members.

For more information, see the Robotics (https://www.colorado.edu/program/robotics/academics/) website.

Required Courses and Credits

The non-thesis and thesis MS options both require a minimum of 30 credit hours of coursework in courses numbered 5000 or above, with a minimum GPA of 3.00. MS thesis option students must complete 4–6 hours of thesis credit as part of the 30 credit hour requirement and meet thesis examination and submission requirements. Non-thesis option students are not required to complete a final examination. All courses listed on the Application for Admission to Candidacy must have been taught by members of the graduate faculty, must have grades of C or better, and must be at the 5000 level or above. For policies concerning academic probation, refer to the graduate school rules in the University Catalog. A maximum of 9 credit hours of graduate coursework may be transferred from another accredited institution, assuming the courses meet program and Graduate School standards.

The MS degree in Robotics will provide a flexible curriculum that provides depth of study across the disciplines from departments and programs hosted in CEAS, including Architectural Engineering (AREN), Aerospace Engineering (ASEN), Biomedical Engineering (BMEN), Chemical Engineering (CHEN), Civil Engineering (CVEN), Computer Science (CSCI), Electrical, Computing and Energy Engineering (ECEN), Electrical Engineering (EEEN), Engineering Management (EMEN), Environmental Engineering (EVEN), Mechanical Engineering (MCEN) or ATLAS. Of the 30 credit hours of coursework required, at least 18 credit hours will be specifically in designated robotics (ROBO) courses, with the remaining credit hours obtained, as needed, from other departments listed above. Of the 18 credit hours of robotics coursework required, one core course is required: ROBO 5000 Introduction to Robotics, which provides a foundation for advanced study. This allows for maximum flexibility for students to tailor coursework for a variety of post-graduate career goals. Additionally, the Robotics Graduate Program will provide guidance on recommended courses in the basic concentration areas, but each student is required to develop a course plan and submit to the graduate committee for approval.

Thesis Examination

A minimum of 4 and maximum of 6 thesis credit hours are required for the thesis option of the MS degree. Students must also write a thesis based on original research conducted under the supervision of a graduate faculty member. The MS thesis must fulfill all Graduate School requirements. After the thesis is completed, a final oral examination is conducted by the student’s thesis committee of at least three faculty members. The approved thesis must be submitted to the program and the Graduate School.

Time Limit

All requirements for the MS degree must be completed within four years of admission to the MS program. Courses may be selected to maximize the number of credits obtained by a student in a given semester (e.g., for an accelerated MS degree), or spread out over multiple years (e.g., for working professionals). A waiver from the Graduate Committee is required for every semester beyond the time limit listed above.

Course Requirements

A minimum of 18 credit hours is required (3 core plus 15 robotics electives).

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBO 5000</td>
<td>Introduction to Robotics</td>
<td>3</td>
</tr>
<tr>
<td>MCEN/ECEN 5138</td>
<td>Feedback Control</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5155</td>
<td>Automated Mechanical Design Synthesis</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5157</td>
<td>Modeling of Human Movement</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5173</td>
<td>Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5195</td>
<td>Bioinspired Robotics</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5228</td>
<td>Special Topics in Mechanical Engineering (Advanced Dynamics)</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5228</td>
<td>Special Topics in Mechanical Engineering (Industrial Automation)</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5293</td>
<td>Mechanics of Soft Matter</td>
<td>3</td>
</tr>
<tr>
<td>MCEN/ECEN 5448</td>
<td>Linear Systems</td>
<td>3</td>
</tr>
<tr>
<td>MCEN 5636</td>
<td>Micro-Electro-Mechanical Systems 1</td>
<td>3</td>
</tr>
</tbody>
</table>
MCEN 6228 | Special Topics in Mechanical Engineering (Robust Multivariable Control) | 3

Robotics Courses in Electrical Engineering

ECEN 5008 | Special Topics (Game Theory) | 3
ECEN/MCEN 5138 | Control Systems Analysis | 3
ECEN/MCEN 5448 | Advanced Linear Systems | 3
ECEN 5458 | Sampled Data and Digital Control Systems | 3
ECEN 5478 | Online Convex Optimization and Learning | 3
ECEN 5638 | Control Systems Laboratory | 3
ECEN 5738 | Theory of Nonlinear Systems | 3

Robotics Courses in Atlas

ATLS/CSCI 5616 | Introduction to Virtual Reality | 3

Technical Electives

12

Courses in STEM fields will be considered, provided they are related to the research goals of the student.

Learning Outcomes

Upon completing the program, students will:

- Possess a working knowledge of the tools specific to their research area. (Non-thesis and thesis)
- Communicate effectively (orally and written) about their research area to roboticists within and outside of their focus area. (Thesis only)