ENIRONMENTAL ENGINEERING - MASTER OF SCIENCE (MS)

The Master of Science in the Environmental Engineering Program focuses on fundamental and applied understanding of the processes that govern our natural and engineered environmental systems. The program of over 35 research and instructional faculty members and about 70 graduate students covers topics ranging from drinking and wastewater treatment, water re-use, ecosystem processes, fate and transport of contaminants, alternative energy, air quality, sustainability and global engineering.

For more information, visit the Environmental Engineering Program (https://www.colorado.edu/even/prospective-students/) website.

Bachelor's–Accelerated Master's Degree Program

Students may earn this degree as part of the Bachelor's–Accelerated Master's (BAM) degree program, which allows currently enrolled CU Boulder undergraduate students the opportunity to earn a bachelor's and master's degree in a shorter period of time.

For more information, see the Accelerated Master's tab for the associated bachelor's degree(s): BSEV in Environmental Engineering (catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/civil-environmental-architectural-engineering/environmental-engineering-bachelor-science-bsev/#acceleratedmasterstext)

Requirements

General Requirements

The following course requirements are subject to change; for the most current information, visit the Program's Curriculum and Courses (http://www.colorado.edu/even/prospective-students/graduate-studies/curriculum-and-courses/) webpage.

Students must complete at least 30 credit hours.

For students who have undertaken prior graduate study, up to 9 hours of relevant graduate-level coursework may be transferred to meet the course requirements for the MS degree, following the rules established by the Graduate School for transfer credit.

Degree Plans

Requirements for the Master of Science in environmental engineering can be fulfilled in two ways.

Plan I: Thesis Option

In addition to 24 credit hours of coursework, candidates complete 4–6 credit hours of thesis credit with a sum of course and thesis credit of at least 30 hours. Additionally, the successful completion and defense of an MS thesis is required.

Plan II: Non-Thesis Option

In addition to 24 credit hours of coursework, candidates complete an additional 6 credit hours of elective courses or independent study.

Course Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 5464</td>
<td>Environmental Engineering Processes</td>
<td>3</td>
</tr>
<tr>
<td>CVEN 5404</td>
<td>Water Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 5151</td>
<td>Atmospheric Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Emphasis Area

See list below

Electives

0-9

Elective courses will be determined in consultation with the student's faculty advisor.

Environmental Engineering Graduate Seminar

0

Two semesters of Environmental Engineering graduate seminar, a non-credit seminar requiring attendance at 2/3 of the seminars each semester for satisfactory completion.

Plan I: Thesis Option

4-6

Thesis Credits

Plan II: Non-Thesis Option

6

Additional elective or independent study credits

Requirements for Recommended Emphasis Areas

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 5484</td>
<td>Applied Microbiology and Toxicology</td>
<td>12</td>
</tr>
<tr>
<td>CVEN 5524</td>
<td>Drinking Water Treatment</td>
<td></td>
</tr>
<tr>
<td>CVEN 5534</td>
<td>Wastewater Treatment</td>
<td></td>
</tr>
<tr>
<td>CVEN 5474</td>
<td>Hazardous and Industrial Waste Management</td>
<td></td>
</tr>
<tr>
<td>CVEN 5554</td>
<td>Fundamentals of Air Quality Management</td>
<td></td>
</tr>
<tr>
<td>MCEN 5131</td>
<td>Air Pollution Control Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 5537</td>
<td>Numerical Methods in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 5454</td>
<td>Statistical Methods for Natural and Engineered Systems</td>
<td>12</td>
</tr>
</tbody>
</table>

Emphasis in Drinking Water, Wastewater and Water Reuse Treatment

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 5484</td>
<td>Applied Microbiology and Toxicology</td>
<td></td>
</tr>
<tr>
<td>CVEN 5524</td>
<td>Drinking Water Treatment</td>
<td></td>
</tr>
<tr>
<td>CVEN 5534</td>
<td>Wastewater Treatment</td>
<td></td>
</tr>
<tr>
<td>CVEN 55537</td>
<td>Numerical Methods in Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>CVEN 5454</td>
<td>Statistical Methods for Natural and Engineered Systems</td>
<td>12</td>
</tr>
</tbody>
</table>

Emphasis in Natural Waters

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 5424</td>
<td>Environmental Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CVEN 5353</td>
<td>Groundwater Hydrology</td>
<td></td>
</tr>
<tr>
<td>CVEN 5333</td>
<td>Physical Hydrology</td>
<td></td>
</tr>
<tr>
<td>CVEN 5323</td>
<td>Applied Stream Ecology</td>
<td></td>
</tr>
</tbody>
</table>

Select 3 credits from the following:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 5537</td>
<td>Numerical Methods in Civil Engineering</td>
</tr>
<tr>
<td>CVEN 5454</td>
<td>Statistical Methods for Natural and Engineered Systems</td>
</tr>
</tbody>
</table>

Emphasis in Global Engineering 18

Select three one-credit modules offered by Mortenson Center

- CVEN 5484 Applied Microbiology and Toxicology
- CVEN 5919 Global Development for Engineers
- CVEN 5939 Global Development Practicum
- CVEN 5969 Water, Sanitation, and Hygiene

Select 3 credits from the following:

- CVEN 5524 Drinking Water Treatment
- CVEN 5534 Wastewater Treatment
- CVEN 5474 Hazardous and Industrial Waste Management
- CVEN 5554 Fundamentals of Air Quality Management
- MCEN 5131 Air Pollution Control Engineering

Emphasis in Air Quality 12

Select 3 credits from the following:

- MCEN 5131 Air Pollution Control Engineering
- CVEN 5554 Fundamentals of Air Quality Management

Select 3 credits from the following:

- MCEN 5021 Introduction to Fluid Dynamics
- CVEN 5313 Environmental Fluid Mechanics

Select 3 credits from the following:

- MCEN 5141 Indoor Air Pollution
- MCEN 5161 Aerosols
- CVEN 5484 Applied Microbiology and Toxicology

Select 3 credits from the following:

- CVEN 5537 Numerical Methods in Civil Engineering
- CVEN 5454 Statistical Methods for Natural and Engineered Systems

Emphasis in Environmental Change Adaptation Engineering 12

Select 3 credits from the following:

- CVEN 5565 Life-Cycle Engineering of Civil Infrastructure Systems

Select 3 credits from the following:

- CVEN 5484 Applied Microbiology and Toxicology
- CVEN 5323 Applied Stream Ecology

Select 3 credits from the following:

- CVEN 5353 Groundwater Hydrology
- CVEN 5333 Physical Hydrology
- GEOG 5321 Snow Hydrology

Select 3 credits from the following:

- CVEN 5373 Water Law, Policy, and Institutions
- ENVS 5000 Policy, Science, and the Environment
- MCEN 5228 Special Topics in Mechanical Engineering
- ATOC 5000 Critical Issues in Climate and the Environment

Find course options on the Mortenson Center (https://www.colorado.edu/center/mortenson/education/mortenson-center-courses/) website.