Credit

STATISTICS AND DATA SCIENCE - BACHELOR OF ARTS (BA)

The Department of Applied Mathematics offers a Bachelor of Arts degree in statistics and data science through the College of Arts and Sciences. The BA degree is designed with an emphasis on inter- and cross-disciplinary training, and is intended to prepare students for a wide range of careers in areas such as statistics, data analytics, data science, business, engineering, economics, public health, epidemiology, insurance, forestry, psychology, social justice and human rights.

Courses at the undergraduate level are designed to provide foundational skills in both traditional statistical methods and cutting-edge data analysis techniques. These skills are in high demand in the current job market and prepare students for desirable careers in statistics and data science. Statisticians and data scientists are often involved in interdisciplinary work; the BA degree requires in-depth training in some area of science, engineering, social science or liberal arts that uses statistics to solve important problems. This knowledge prepares graduates to successfully communicate and collaborate with practitioners in these fields. A capstone course in statistical collaboration provides the opportunity for students to synthesize their previous coursework.

The Department of Applied Math offers a broad range of undergraduate research opportunities funded by a variety of federal agencies. Working with faculty, students interested in statistics and data science have developed solutions to various problems in fluids, dynamical systems, data analysis, probability and statistics, networks, signal processing, math biology, math education and numerics. Students can gain professional exposure through the student chapter of the Society of Industrial and Applied Mathematics (SIAM) or through the Data Buffs, the student chapter of the American Statistical Association. Applied Math also has a local chapter of AWM, the Association for Women in Mathematics.

Outside Area of Emphasis/Application

Students will choose an outside area of emphasis/application to acquire knowledge in a discipline-specific area, where statistical applications are prevalent. Students will take a minimum of 18 credits in a department or certificate program outside of APPM/STAT, including a minimum of 6 credits at the upper-division level. Final course selection will be made in consultation with advisors and faculty from the departments, as well as faculty advisors within the Department of Applied Mathematics.

Laboratory for Interdisciplinary Statistical Analysis (LISA)

After learning the communication and collaboration skills necessary to help domain experts answer their research, business or policy questions, students have the opportunity to join LISA to gain additional practical experience. Students will collaborate with a variety of researchers around campus and in the community to apply statistics and data science to solve real problems. Students in LISA will also work with graduate students and faculty to engage in outreach activities to improve statistics and data science skills and literacy in the wider community.

Requirements

Course Requirements

To earn a BA in statistics and data science, a student must complete the requirements of the College of Arts and Sciences.

Students must earn a grade of C- or better in all coursework applied to the major and have at least a C average for all attempted work for the major. Calculus 1 & 2 (usually APPM 1350 and APPM 1360) are considered introductory courses and are prerequisites for entry into the major.

Required Courses and Credits

Code

Required Courses		
Mathematical Found	lations	
APPM 2340	Calculus 3 for Statistics and Data Science	4
or APPM 2350	Calculus 3 for Engineers	
or MATH 2400	Calculus 3	
APPM 3310	Matrix Methods and Applications	3
Computation		
STAT 2600	Introduction to Data Science	4
Statistics Theory		
STAT 3100	Applied Probability	3
STAT 4520	Introduction to Mathematical Statistics	3
Statistical Modeling		
STAT 3400	Applied Regression	3
STAT 4610	Statistical Learning	3
One of the following	courses:	
STAT 4640	Capstone in Statistics and Data Science	3
or STAT 4680	Statistics and Data Science Collaboration	
Three of the followi	ng courses: ¹	9
STAT 4100	Markov Processes, Queues, and Monte Carlo Simulations	
STAT 4250	Data Assimilation in High Dimensional Dynamical Systems	
STAT 4350	Applied Deep Learning 1	
STAT 4360	Applied Deep Learning 2	
STAT 4400	Advanced Statistical Modeling	
STAT 4430	Spatial Statistics	
STAT 4540	Introduction to Time Series	
STAT 4630	Computational Bayesian Statistics	
STAT 4700	Philosophical and Ethical Issues in Statistics	
APPM 3650	Algorithms and Data Structures in Python	
APPM 4370	Computational Neuroscience	
APPM 4440	Undergraduate Applied Analysis 1	
APPM 4490	Theory of Machine Learning	
APPM 4515	High-Dimensional Probability for Data Science	
APPM 4530	Stochastic Analysis for Finance	
APPM 4565	Random Graphs	

Total Credit Hours 35

Any APPM or STAT 3-credit special topics courses in probability or statistics may also be used to meet this requirement.

Ancillary Requirements

Code	Title	Credit
		Hours
Computing Requirem	ent	

APPM 1650	Python for Math and Data Science Applications ¹	4
or CSCI 1300	Computer Science 1: Starting Computing	
or CSCI 2750	Computing, Ethics and Society	
or ASEN 1320		

Outside Area of Emphasis Requirement

Additional coursework in a department or certificate program outside of APPM/STAT, including a minimum of 6 credits at the upper-division level. ²

Total Credit Hours 22

18

- Or another department-approved course in Python with Mathematical Applications.
- ² Can be used to fulfill Gen. Ed. requirements when applicable.

Graduating in Four Years

Consult the four-year graduation guarantee (https://www.colorado.edu/engineering-advising/get-your-degree/first-year-freshmen/four-year-graduation-guarantee/) for information on eligibility. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in Statistics and Data Science, students should meet the following requirement:

· In the first semester, declare the statistics and data science major.

Students must consult with a major advisor to determine adequate progress toward completion of the major.

Recommended Four-Year Plan of Study

Through the required coursework for the major, students will fulfill 12 credits in the Natural Science area, but not the laboratory requirement, of the Gen Ed Distribution Requirement and will complete the QRMS component of the Gen Ed Skills Requirement. Students can also possibly fulfill some of the required credit hours in the other areas Gen Ed Distribution and Diversity Requirements with the courses they take to complete the required Outside Area of Emphasis.

Year One

Fall Semester		Credit Hours
APPM 1350	Calculus 1 for Engineers	4
STAT 2600	Introduction to Data Science	4
Gen. Ed. Skills course Communication)	e (example: Lower-division Written	3
Gen. Ed. Distribution Lab)	course (example: Natural Sciences with	4
	Credit Hours	15
Spring Semester		
APPM 1360	Calculus 2 for Engineers	4

APPM 1650	Python for Math and Data Science	4
or CSCI 1300	Applications or Computer Science 1: Starting	
Can Ed Diatribution	Computing	3
Humanities/US Per	n/Diversity course (example: Arts & spective)	3
Elective		4
	Credit Hours	15
Year Two		
Fall Semester		
APPM 2340 or APPM 2350	Calculus 3 for Statistics and Data Science	4
	or Calculus 3 for Engineers	
	n course (example: Arts & Humanities)	3
Gen. Ed. Distribution Sciences/Global Pe	n/Diversity course (example: Social rspective)	3
Outside Area of Em	phasis course	3
Elective		3
	Credit Hours	16
Spring Semester		
APPM 3310	Matrix Methods and Applications	3
STAT 3100	Applied Probability	3
Gen. Ed. Distribution	n course (example: Social Sciences)	3
Outside Area of Em	phasis course	3
Elective		3
	Credit Hours	15
Year Three		
Fall Semester		
STAT 3400	Applied Regression	3
STAT 4520	Introduction to Mathematical Statistics	3
	phasis Course (Upper-division)	3
Gen. Ed. Skills cours Communication)	se (example: Upper-division Written	3
Gen. Ed. Distribution	n course (example: Arts & Humanities)	3
	Credit Hours	15
Spring Semester		
STAT 4610	Statistical Learning	3
Upper-division STA		3
	phasis Course (Upper-division)	3
Gen. Ed. Distribution	n course (example: Arts & Humanities)	3
Gen. Ed. Distribution	n course (example: Social Sciences)	3
	Credit Hours	15
Year Four		
Fall Semester		
STAT 4640 or STAT 4680	Capstone in Statistics and Data Science or Statistics and Data Science Collaboration	3
Upper-division STA	Γ elective	3
Gen. Ed. Distribution	n course (Social Sciences)	3
	phasis (upper-division) course or elective	3
Elective		3
	Credit Hours	15

Spring Semester

Upper-division STAT elective	3
Outside Area of Emphasis (upper-division) course or elective	3
Elective(s)	8
Credit Hours	14
Total Credit Hours	120

Content Knowledge

Students completing the undergraduate degree in statistics and data science will be broadly knowledgeable in the following areas:

- · Mathematics, statistics and data science
 - Foundational knowledge in the areas of mathematics, statistics and data science that are most important to the analysis of data.
 - · Statistical intuition and thinking.
 - Skills to write efficient, reproducible code related to data analysis in at least two programming languages (e.g., R, Python, C/C++, Julia, MATLAB, etc.).
 - Skills necessary to complete complex data analysis projects.
- · A domain of application
 - The ability to utilize their knowledge of mathematics, statistics and computing to develop algorithms and apply methods for solving real-world data analysis problems.
 - The ability to contribute to at least one domain of application as data scientists.
- · Professional skills in communication, collaboration and ethics
 - The ability to effectively communicate statistical results to experts and non-experts.
 - · The ability to effectively collaborate with domain experts.
 - The ability to think critically about the relationship between data, ethics, and society.

Student Outcomes

By the completion of the program, students will be able to:

- Have acquired problem-solving and modeling skills that allow them to analyze and visualize data and answer statistical questions.
- · Understand mathematical statistics, including probability.
- Have acquired foundational mathematical knowledge, including calculus and linear algebra, as it pertains to statistics and data science.
- Be proficient in at least two programming languages and their data science packages.
- Be able to write efficient, reproducible code related to data analysis.
- Have acquired an in-depth knowledge of an area of application, as well as skills to collaborate with domain experts.
- Have the ability to clearly and concisely communicate statistical results in oral, written and visual forms.

Bachelor's-Accelerated Master's Degree Program(s)

The bachelor's—accelerated master's (BAM) degree program options offer currently enrolled CU Boulder undergraduate students the opportunity to receive a bachelor's and master's degree in a shorter period of time. Students receive the bachelor's degree first but begin taking graduate coursework as undergraduates (typically in their senior year).

Because some courses are allowed to double count for both the bachelor's and the master's degrees, students receive a master's degree in less time and at a lower cost than if they were to enroll in a stand-alone master's degree program after completion of their baccalaureate degree. In addition, staying at CU Boulder to pursue a bachelor's—accelerated master's program enables students to continue working with their established faculty mentors.

BA in Statistics and Data Science, MS in Applied Mathematics

Admissions Requirements

In order to gain admission to the BAM program named above, a student must meet the following criteria:

- Complete a minimum of 6 credits (two courses) of STAT coursework at the 3000 or 4000 level.
- · Complete all prerequisite courses with a minimum grade of B.
- · Have a cumulative GPA of 3.4 or higher.
- Have a cumulative GPA of 3.4 in all APPM and STAT coursework.
 If a student's cumulative GPA or APPM/STAT GPA is between 3.0 and 3.4, then one letter of reference is required. The letter can be written either by a faculty member or by a student's undergraduate academic advisor. The letter should justify why the student should be considered for admission into the program and should attest to the student's ability to complete the MS program.
- · Have at least junior class standing.

Program Requirements

Students may take up to and including 12 credit hours while in the undergraduate program which can later be used toward the master's degree. However, only six credit hours may be double counted toward the bachelor's degree and the master's degree. Students must apply to graduate with the bachelor's degree, and apply to continue with the master's degree, early in the semester in which the undergraduate requirements will be completed.

Though not required for admission, students must complete APPM 4440 Undergraduate Applied Analysis 1 before they graduate with their BA.

Please see the BAM degree program (https://www.colorado.edu/amath/academics/bachelors-degree-statistics-data-science-masters-degree-applied-mathematics-specialization/)web page for more information.