ATOMICHE AND OCEANIC SCIENCES - BACHELOR OF ARTS (BA)

The atmospheric and oceanic sciences (ATOC) Bachelor of Arts degree is the first of its kind at CU Boulder for students interested in an in-depth understanding of the physical basis for the role of the atmosphere and oceans in Earth’s climate system. An ATOC degree will prepare students to pursue a wide range of careers in areas as diverse as the energy sector, insurance, military, air and water quality monitoring, weather and aerospace industries. It will provide a solid foundation for advanced degrees in the atmospheric and oceanic sciences, and for professions in scientific research and academia.

ATOC’s curriculum responds to demands of current students for more interactive learning opportunities and to demands of employers for graduates who have been trained to provide quantitative solutions to real-world problems. It is designed to provide students with a core set of knowledge and skills related to atmospheric and oceanic sciences, and to engage students in hands-on, interactive learning early and often. To that end, it requires students to take several “methods” courses that emphasize quantitative problem-solving by focusing on some combination of data analysis, observations and/or modeling; all of these courses will incorporate some level of computer programming or scientific computing. ATOC strongly recommends that every student have a laptop computer if it is financially feasible. Students who intend to purchase a computer and wish to have its cost included in their financial aid calculations are strongly encouraged to consult the Office of Financial Aid before purchase.

ATOC’s curriculum is also designed to take advantage of our unique position as a university in the center of a world-renowned mecca for earth system science. Scientists from the local community contribute their expertise to the ATOC curriculum, particularly in the interactive methods courses, and mentor seniors in their thesis research.

Contact Information

ATOC Undergraduate Advisors:

- Associate Professor Katja Friedrich (katja.friedrich@colorado.edu), SEEC N241B
- Associate Professor John Cassano (john.cassano@colorado.edu), SEEC C279

Director of Undergraduate Education:

- Dr. Derek Brown (derek.brown@colorado.edu)

Academic Advising Center First-Year Liaison:

- Gretchen Lang (gretchen.lang@colorado.edu)

Academic Advising Center for ATOC majors beyond first year:

- Tabs Lannom (tabitha.lannom@colorado.edu)

For further information concerning undergraduate studies, contact ATOC’s graduate and undergraduate program assistant, Laurie Conway (laurie.conway@colorado.edu).

Requirements

Students receiving a BA in atmospheric and oceanic sciences (ATOC) must satisfy the basic requirements of the College of Arts and Sciences (MAPS, Gen Ed requirements and credits) and fulfill the requirements listed below.

Students are required to complete 45 credits in lower and upper-division ATOC coursework, including 21 credits of core ATOC courses, 12 credits of methods in ATOC, and 12 credits of designated upper-division ATOC electives. The requirements for the ATOC major also include 32–37 hours of ancillary science and mathematics. All required major courses and all required ancillary courses must be passed with a C- or better.

Under normal circumstances, no more than 45 credits in ATOC may be used toward a student’s total University of Colorado graduation requirements. However, up to 6 hours of designated department honors courses are exempted from this credit-hour maximum. Students must have a grade point average of at least 2.000 in the major in order to graduate.

Required Courses and Credits

ATOC Major Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>

Introductory Atmospheric and Oceanic Sciences Requirement

Select one of the following:

- ATOC 1050 Weather and the Atmosphere
- ATOC 1060 Our Changing Environment: El Nino, Ozone, and Climate
- ATOC 2050 Introduction to Atmospheric Research
- ATOC 2500 Special Topics in Atmospheric and Oceanic Sciences - Lower Division
- FYSM 1000 First Year Seminar (ATOC offered sections)

Core Atmospheric and Oceanic Sciences Requirements

Select three of the following courses:

- ATOC 3050 Principles of Weather
- ATOC/GEOL 3070 Introduction to Oceanography
- ATOC 3300 Analysis of Climate and Weather Observations
- ATOC 3500/CHEM 3151 Air Chemistry and Pollution
- ATOC 3600 Principles of Climate

Fundamentals of Atmospheric and Oceanic Sciences

Select three of the following courses:

- ATOC 4200 Biogeochemical Oceanography
- ATOC 4710 Introduction to Atmospheric Physics
- ATOC 4720 Atmospheric Dynamics
- ATOC 4730 Physical Oceanography and Climate

Methods in Atmospheric and Oceanic Sciences

Select 12 credit hours of the following, 6 of which can be from independent research (ATOC 4900, ATOC 4950 or ATOC 4990). Some courses offered as ATOC 4500 Special Topics may satisfy this requirement.
Atmospheric and Oceanic Sciences - Bachelor of Arts (BA)

ATOC 4500 Special Topics in Atmospheric and Oceanic Sciences - Upper Division (Choose from the following: topics: Weather Modeling Lab, Instrument Lab, Remote Sensing, Field Observations and Measurements, Numerical Methods and Modeling, Objective Data Analysis, Synoptic Dynamic Meteorology, and Applications of Numerical Models)

ATOC 4700 Weather Analysis & Forecasting
ATOC 4815 Scientific Programming, Data Analysis and Visualization Laboratory
ATOC 4830 Remote Sensing Lab
ATOC 4840 Field Observations and Measurements Laboratory
ATOC 4850 Numerical Methods Laboratory
ATOC 4870 Climate Modeling Laboratory
ATOC 4875 Weather Modeling Laboratory
ATOC 4900 Independent Study
ATOC 4950 Honors Thesis
ATOC 4990 Internship
ATOC Electives (At least 12 credit hours in ATOC courses not used to fulfill a requirement above.)

Upper-Division ATOC Electives 9
Upper- or Lower-Division ATOC Elective 3
Total Credit Hours 45

Required Ancillary Coursework from Outside ATOC

Ancillary Science and Mathematics Requirements
The field of atmospheric and oceanic sciences is highly interdisciplinary; therefore, students must develop a basic understanding of physics, chemistry, and mathematics to be successful. The required courses in the physical sciences and math departments outside of ATOC are a critical part of the major; they are needed to build a strong foundation upon which the remaining curriculum is based. All courses must be passed with a grade of C- or better required.

APPM 1350 Calculus 1 for Engineers 4-5
or MATH 1300 Calculus 1 4
APPM 1360 Calculus 2 for Engineers 4-5
or MATH 2300 Calculus 2 4
APPM 2350 Calculus 3 for Engineers 4-5
or MATH 2400 Calculus 3 4
APPM 2360 Introduction to Differential Equations with Linear Algebra (Or MATH 2130 and MATH 3430) 4-6
CHEM 1113 General Chemistry 1 4
CSCI 1300 Computer Science 1: Starting Computing 4
PHYS 1110 General Physics 1 4
PHYS 1120 General Physics 2 4
Total Credit Hours 32-37

Graduating in Four Years
Consult the Four-Year Guarantee Requirements for information on eligibility. The concept of "adequate progress" as it is used here only refers to maintaining eligibility for the four-year guarantee; it is not a requirement for the major. To maintain adequate progress in ATOC, students should meet the following requirements:

• In the first semester, declare the Atmospheric and Oceanic Sciences major.

Students must consult with a major advisor to determine adequate progress toward completion of the major.

Sample Four-Year Plan of Study

Through the required coursework for the major, students will complete all 12 credits of the Natural Sciences area of the Gen Ed Distribution Requirement and the QRMS component of the Gen Ed Skills Requirement.

Not all ATOC 4500 courses satisfy all requirements. See department for more information.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year One</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FYSM 1000</td>
<td>First Year Seminar (ATOC section)</td>
<td>3</td>
</tr>
<tr>
<td>or ATOC 1050</td>
<td>or Weather and the Atmosphere</td>
<td></td>
</tr>
<tr>
<td>or ATOC 1060</td>
<td>or Our Changing Environment: El Nino, Ozone, and Climate</td>
<td></td>
</tr>
<tr>
<td>or ATOC 2050</td>
<td>or Introduction to Atmospheric Research</td>
<td></td>
</tr>
<tr>
<td>or ATOC 2500</td>
<td>or Special Topics in Atmospheric and Oceanic Sciences - Lower Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPM 1350</td>
<td>Calculus 1 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1110</td>
<td>General Physics 1</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed. Skills course (example: Lower-division Written Communication)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPM 1360</td>
<td>Calculus 2 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 1120</td>
<td>General Physics 2</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed. Distribution/Diversity course (example: Arts & Humanities/US Perspective)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gen. Ed. Distribution course (example: Social Sciences)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Year Two</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1113</td>
<td>General Chemistry 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1114</td>
<td>Laboratory in General Chemistry 1</td>
<td>1</td>
</tr>
<tr>
<td>APPM 2350</td>
<td>Calculus 3 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>Core ATOC course (see requirements)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gen. Ed. Distribution/Diversity course (example: Social Sciences/Global Perspective)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Spring Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPM 2360</td>
<td>Introduction to Differential Equations with Linear Algebra</td>
<td>4</td>
</tr>
</tbody>
</table>
Learning Outcomes

ATOC’s curriculum responds to demands of current students for more interactive learning opportunities and to demands of employers for graduates who have been trained to provide quantitative solutions to real-world problems. It is designed to provide students with a core set of knowledge and skills related to atmospheric and oceanic sciences, and to engage students in hands-on, interactive learning early and often.

To that end, it requires students to take several “methods” courses that emphasize quantitative problem-solving by focusing on some combination of data analysis, observations, and/or modeling; all of these courses will incorporate some level of computer programming or scientific computing.

ATOC course learning goals include graphical literacy, investigative thinking, societal and personal relevance, and knowledge of the physical processes of weather and climate. In addition, ATOC majors should demonstrate skill in communication scientific concepts elegantly and clearly.