APPLIED MATHEMATICS - BACHELOR OF SCIENCE (BSAM)

The Department of Applied Mathematics in the College of Arts and Sciences offers a Bachelor of Science degree in applied mathematics through the College of Engineering and Applied Science. The BS degree is designed to prepare graduates for exciting and diverse professional careers, and for graduate study in a wide variety of disciplines.

Courses at the undergraduate level provide training in a broad range of mathematical techniques and problem-solving strategies. These courses teach the concepts and methods central to applications of linear algebra, ordinary and partial differential equations, numerical analysis, probability and statistics, complex variables, and nonlinear dynamics. Since applied mathematicians often are involved in interdisciplinary work, the BS degree requires an in-depth knowledge of some area of science or engineering where mathematics is used. This knowledge prepares graduates to successfully communicate and cooperate with engineers and scientists. The BS degree also requires knowledge of a programming language and skill in using the computer.

For more information, visit the department's Prospective Students (https://www.colorado.edu/amath/prospective-students/undergraduate/) webpage.

Research Opportunities

The Department of Applied Math offers a broad range of undergraduate research opportunities funded by National Science Foundation grants, and students can gain professional exposure through the student chapter of the Society of Industrial and Applied Mathematics (SIAM) on campus.

Working with faculty, applied math students have developed solutions to a variety of problems in fluids, dynamical systems, data analysis, networks, signal processing, math biology, math education and numerics. Applied math students also worked with faculty to develop the Mathematical Visualization Toolkit, an award–winning online instructional tool that helps students better visualize calculus concepts.

Requirements Required Courses and Credits

The BS degree in applied mathematics requires the satisfactory completion of a minimum of 128 credit hours as follows.

Code	Title	Credit Hours
Calculus		
APPM 1350	Calculus 1 for Engineers ¹	4
or APPM 1345	Calculus 1 with Algebra, Part B	
APPM 1360	Calculus 2 for Engineers ¹	4
APPM 2350	Calculus 3 for Engineers ¹	4
Computing Experience	e	
APPM 1650	Python for Mathematical and Statistical Applications	4
or CSCI 1300	Computer Science 1: Starting Computing	
or CSCI 1320		

S		3 3 1 3	
S	or ECEN 1310	C Programming for ECE	
	cience Requirement	t	
PI	HYS 1110	General Physics 1	4
	or PHYS 1115	General Physics 1 for Majors	
PI	HYS 1120	General Physics 2	4
	or PHYS 1125	General Physics 2 for Majors	
PI	HYS 1140	Experimental Physics 1	1
Se (ir fo	elect at least 4 addi ncluding 1 credit of llowing:	tional credits of chemistry or biology laboratory science) from one of the	4-8
	CHEN 1201 & CHEM 1114	General Chemistry for Engineers 1 and Laboratory in General Chemistry 1	
	CHEN 1211 & CHEM 1221	Accelerated Chemistry for Engineers and Engineering General Chemistry Lab	
	CHEM 1113 & CHEM 1114	General Chemistry 1 and Laboratory in General Chemistry 1	
	EBIO 1210 & EBIO 1220 & EBIO 1230 & EBIO 1240 MCDB 1150 & MCDB 2150	General Biology 1 and General Biology 2 and General Biology Laboratory 1 and General Biology Laboratory 2 Introduction to Cellular and Molecular Biology and Principles of Genetics ²	
	PHYS 2130 & PHYS 2150	General Physics 3 and Experimental Physics 2	
	PHYS 2170 & PHYS 2150	Foundations of Modern Physics and Experimental Physics 2	
A	PPM Courses		
AI	PPM 2360	Introduction to Differential Equations with Linear Algebra	4
ΔΙ	0010	Matrix Methods and Applications	
	PIM 3310	maan pphoatone	3
AI	PPM 4350	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems	3
Al	PPM 3310 PPM 4350 PPM 4360	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications	3 3 3
AI AI	PPM 3310 PPM 4350 PPM 4360 PPM 4650	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1	3 3 3 3
AI AI AI	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the follo	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing:	3 3 3 3 3 3
AI AI Se	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the follo APPM 4440	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing: Undergraduate Applied Analysis 1	3 3 3 3 3 3
AI AI Se	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the follo APPM 4440 MATH 3001	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing: Undergraduate Applied Analysis 1 Analysis 1	3 3 3 3 3
Al Al Se	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the follo APPM 4440 MATH 3001 MATH 3140	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing: Undergraduate Applied Analysis 1 Analysis 1 Abstract Algebra 1	3 3 3 3 3
Al Al Se	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the follo APPM 4440 MATH 3001 MATH 3140 PPM, STAT or MATI	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing: Undergraduate Applied Analysis 1 Analysis 1 Abstract Algebra 1 H Courses Numbered 4000 or Above	3 3 3 3 3
Al Al Al Se Al Al Al Al	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the follo APPM 4440 MATH 3001 MATH 3140 PPM, STAT or MATI two-semester course athematics courses PPM 4350 and APP	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing: Undergraduate Applied Analysis 1 Analysis 1 Abstract Algebra 1 H Courses Numbered 4000 or Above se sequence of applied mathematics or s numbered 4000 or above in addition to M 4360. For example:	3 3 3 3 3 6
Al Al Al Sc Al Al Al Al	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the follo APPM 4440 MATH 3001 MATH 3140 PPM, STAT or MATI two-semester courses athematics courses PPM 4350 and APP APPM 4380 & APPM 4390	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing: Undergraduate Applied Analysis 1 Analysis 1 Abstract Algebra 1 H Courses Numbered 4000 or Above se sequence of applied mathematics or s numbered 4000 or above in addition to M 4360. For example: Modeling in Applied Mathematics and Modeling in Mathematical Biology	3 3 3 3 3 6
Al Al Al Se Al A M Al	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the folk APPM 4440 MATH 3001 MATH 3140 PPM, STAT or MATH two-semester courses PPM 4350 and APP APPM 4380 & APPM 4390 APPM 4440 & APPM 4450	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems Methods in Applied Mathematics: Complex Variables and Applications Intermediate Numerical Analysis 1 owing: Undergraduate Applied Analysis 1 Analysis 1 Abstract Algebra 1 H Courses Numbered 4000 or Above se sequence of applied mathematics or s numbered 4000 or above in addition to M 4360. For example: Modeling in Applied Mathematics and Modeling in Mathematical Biology Undergraduate Applied Analysis 1 and Undergraduate Applied Analysis 2	3 3 3 3 6
Al Al Al Se Al Al	PPM 3310 PPM 4350 PPM 4350 PPM 4650 elect one of the follo APPM 4440 MATH 3001 MATH 3140 PPM, STAT or MATI two-semester courses PPM 4350 and APP APPM 4380 & APPM 4390 APPM 4440 & APPM 4450 APPM 4560 & STAT 4520	Methods in Applied Mathematics: Fourier Series and Boundary Value ProblemsMethods in Applied Mathematics: Complex Variables and ApplicationsIntermediate Numerical Analysis 1owing:Undergraduate Applied Analysis 1Analysis 1Abstract Algebra 1H Courses Numbered 4000 or Abovese sequence of applied mathematics or s numbered 4000 or above in addition to M 4360. For example:Modeling in Applied Mathematics and Modeling in Mathematical BiologyUndergraduate Applied Analysis 1 and Undergraduate Applied Analysis 2Markov Processes, Queues, and Monte Carlo Simulations and Introduction to Mathematical Statistics	3 3 3 3 6
Al Al Al Al Al Al	PPM 3310 PPM 4350 PPM 4360 PPM 4650 elect one of the folk APPM 4440 MATH 3001 MATH 3140 PPM, STAT or MATH two-semester courses PPM 4350 and APP APPM 4380 & APPM 4380 & APPM 4450 APPM 4450 & STAT 4520	Methods in Applied Mathematics: Fourier Series and Boundary Value ProblemsMethods in Applied Mathematics: Complex Variables and ApplicationsIntermediate Numerical Analysis 1owing:Undergraduate Applied Analysis 1Analysis 1Abstract Algebra 1H Courses Numbered 4000 or Abovese sequence of applied mathematics or s numbered 4000 or above in addition to M 4360. For example:Modeling in Applied Mathematics and Modeling in Mathematical BiologyUndergraduate Applied Analysis 2Markov Processes, Queues, and Monte Carlo Simulations and Introduction to Mathematical StatisticsIntermediate Numerical Analysis 1 and Intermediate Numerical Analysis 2	3 3 3 3 6

1

APPM 3570	Applied Probability	
& STAT 4520	and Introduction to Mathematical Statistics ³	
APPM 3570	Applied Probability	
& APPM 4560	and Markov Processes, Queues, and Monte Carlo Simulations ³	
STAT 4000	Statistical Methods and Application I	
& STAT 4010	and Statistical Methods and Applications	
APPM, STAT or MA	TH Courses Numbered 3000 or Above	
A minimum of 24 cr	edit hours in APPM, STAT or MATH courses	24
	bove (including the required courses).	
Engineering Courses	3	
A minimum of 24 cr	edit hours in engineering (see	24
"Recommended Opt	ions For Applied Math Majors" below)	
General Bachelor's [Degree Requirements	
Humanities & social	sciences electives ⁵	15
Writing ⁶		3
Free Electives		
Free electives shoul to a minimum of 12	d be chosen to bring the total credit hours 3.	8

Total Credit Hours

- ¹ With a minimum grade of C-.
- ² Plus MCDB lab courses (2 credits).
- ³ APPM 3570 is the only 3000-level course that can be used to satisfy this requirement.
- ⁴ No more than 3 credit hours of APPM 4840 may count toward these
 24. No more than 6 credit hours of independent study are allowed for credit toward the BS degree in applied mathematics.
- ⁵ Students may choose courses from the list of college-approved humanities and social sciences (HSS) electives (http:// www.colorado.edu/engineering/academics/policies/hss/).
- ⁶ Students may choose a course from the list of college-approved writing courses (http://www.colorado.edu/engineering/academics/ policies/hss/).

Recommended Options

In order to fulfill their degree requirements, applied mathematics majors are required to take 24 credit hours in engineering or approved courses with significant mathematical content in A&S or business courses, with at least 6 credit hours in courses numbered 3000 or above and at least 15 credit hours in courses numbered 2000 or above. Here are several possible options. It should be stressed that the listed courses and options are *suggestions* and not *requirements*. Students may formulate their own option to meet their educational and career goals. Final course selection should be made in consultation with an applied math advisor.

These 24 credit hours are in addition to those required credit hours listed in "Computing Experience" and "Science Requirement" (mentioned above). ENES 3100, ENES 3200 and ENES 4200 may not be used to fulfill this requirement, although they may be used as humanities and social sciences electives. Several possible pre-approved options are listed below.

I. Actuarial

BCOR 1025, is a prerequisite for BCOR 2203 and BCOR 2204. Students are advised to substitute an applied math prob/stats course for this prerequisite.

Students are required to

take APPM 3570³, STAT 4520^{2,6} and STAT 4540^{2,6} for the actuarial option. Students are strongly advised to take APPM 4560.⁶ Additional courses that may be useful include ACCT 3220 or ACCT 3230. These courses can be taken only if space is available on the first day of the semester.

Code	Title	Credit Hours
BCOR 2203	Principles of Accounting I (prerequisites for this course are waived for Actuarial Certificate students)	1.5
BCOR 2204	Principles of Financial Management	1.5
ECON 2010	Principles of Microeconomics ¹	4
ECON 2020	Principles of Macroeconomics ¹	4
ECON 3070	Intermediate Microeconomic Theory ^{2,4}	4
ECON 3080	Intermediate Macroeconomic Theory ^{2,4}	3
ECON 4070	Topics in Microeconomics	3
FNCE 3010	Corporate Finance ^{2,4}	3
Some (or all) of the	following courses should be taken:	3-9
FNCE 3030	Investment and Portfolio Management	
FNCE 4040	Derivative Securities ⁵	
ECON 4818	Introduction to Econometrics	
Total Credit Hours		27-33

Total Credit Hours

128-132

¹ ECON 2010 and ECON 2020 may not count toward the 24 credit hours of the option requirement; however, they can be used to meet the 18credit-hour social science/humanities requirement of the College of Engineering.

- ² The Society of Actuaries requires students to take certain college courses that will earn the Validation by Educational Experiences (VEE) credit. Courses marked with a ² satisfy this requirement, provided a grade of B- or better is obtained. These courses are also required for students completing the Actuarial Certificate Program. VEE credit is granted for BCOR 2203, BCOR 2204, and FNCE 3010.
- ³ The first actuarial examination, Exam P/1, can be taken after completing this course.
- ⁴ The second actuarial examination, Exam FM/2, can be taken after completing these courses, as well as a self-study in interest theory.
- ⁵ The third actuarial examination, Exam MFE/3, can be taken after completing APPM 4560, FNCE 4040 and an independent study.
- ⁶ The fourth actuarial examination, Exam C/4, can be taken after completing these courses.

II. Aerospace Engineering Sciences

Students wishing to enroll in ASEN courses must register through an aerospace advisor. Additionally, students who pursue this option are usually double majors, and should see their applied mathematics advisor if they wish to pursue this option without being a double major.

24

III. Chemical Engineering

Students choosing this option must take CHEN 1310 as part of their applied math major. CHEN 1310 is a prerequisite for CHEN 2120.

Code	Title	Credit Hours
CHEN 1211 & CHEM 1221	Accelerated Chemistry for Engineers and Engineering General Chemistry Lab	5
Recommended cours	es:	20
CHEN 2120	Chemical Engineering Material and Energy Balances	
CHEN 3200	Chemical Engineering Fluid Mechanics	
CHEN 3210	Chemical Engineering Heat and Mass Transfer	
CHEN 3220	Chemical Engineering Separations	
CHEN 3320	Chemical Engineering Thermodynamics	
CHEN 4521	Physical Chemistry for Engineers	
CHEN 4330	Chemical Engineering Reaction Kinetics	
CHEM 3311	Organic Chemistry 1	
Total Credit Hours		25

IV. Civil, Environmental and Architectural Engineering

Students wishing to enroll in CVEN courses that are restricted to majors only must do so through the CVEN advisor.

The Applied Mathematics and Civil Engineering departments offer a streamlined dual-degree track for talented students who are interested in analytical and computational methods related to civil engineering and general engineering science. Students can complete a double major from both programs with a minimum of 143 credits. Consult APPM-CVEN double major program faculty advisors in Applied Mathematics and Civil Engineering for additional information.

Code	Title	Credit Hours
Recommended Basic	Courses	
CVEN 2121	Analytical Mechanics 1	3
AREN 2110	Thermodynamics	3
CVEN 3161	Mechanics of Materials 1	3
CVEN 3313	Theoretical Fluid Mechanics	3
or AREN 2120	Fluid Mechanics and Heat Transfer	
Additional Courses		
Select two courses fr additional courses to	om any one of the following groups plus bring the total credit hours to 24:	12
Group A		
CVEN 3414	Fundamentals of Environmental Engineering	
CVEN 4333	Engineering Hydrology	
Group B		
CVEN 3525	Structural Analysis	
CVEN 3708	Geotechnical Engineering 1	
CVEN 4545	Steel Design	
CVEN 4555	Reinforced Concrete Design	
Group C		
AREN 2050	Building Materials and Systems	
AREN 3010	Energy Efficient Buildings	

V. Computational Biology and Bioinformatics		
Total Credit Hours		
AREN 3540	Illumination I	

The following concentration of selected courses from computer science, biology and chemistry provide the foundation for work in mathematical biology, computational biology and/or bioinformatics.

Students selecting this option are advised to

take APPM 3570, STAT 4520, STAT 4540 and APPM 4390 as part of their applied math coursework. Other recommended courses include CSCI 3287.

Code	Title	Credit Hours
CSCI 2270	Computer Science 2: Data Structures ¹	4
CHEM 3311 & CHEM 3321	Organic Chemistry 1 and Laboratory in Organic Chemistry 1	5
MCDB 1150 & MCDB 1152	Introduction to Cellular and Molecular Biology and Problem Solving Co-Seminar for Introduction to Molecular and Cellular Biology	4
MCDB 2150 & MCDB 2152	Principles of Genetics and Problem Solving Co-Seminars for Genetics	4
MCDB 3135 & MCDB 3140	Molecular Biology and Cell Biology Laboratory	5
CSCI 3104	Algorithms ²	4
CSCI 4314	Dynamic Models in Biology	3
Total Credit Hours		29

¹ CSCI 1300 is a prerequisite for CSCI 2270

² CSCI 2824 or APPM 3170 are prerequisites for CSCI 3104

VI. Computer Science

Students completing the computer science option should have a minor in computer science (https://catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/computer-science/ computer-science-minor/). Check with the Computer Science Department (https://www.colorado.edu/cs/).

Code	Title	Credit Hours
Required Course		
CSCI 2270	Computer Science 2: Data Structures ¹	4
Additional Courses		
At least two of these choices include:	must be at the 3000 level. Possible	20
CSCI 2400	Computer Systems	
CSCI 3104	Algorithms ²	
CSCI 3155	Principles of Programming Languages	
CSCI 3287	Design and Analysis of Database Systems	
CSCI 3308	Software Development Methods and Tools	
CSCI 3753	Design and Analysis of Operating Systems	

Additional CSCI courses to bring the total number of credit hours to at least 24

24

Total Credit Hours

1

- CSCI 1300 is a prerequisite for CSCI 2270.
- ² APPM 3170 or CSCI 2824 are prerequisites for CSCI 3104.

VII. Electrical & Computer Engineering

The Department of Electrical and Computer Engineering offers three minor programs.

- Students interested in this option should consult with an advisor as several areas are available (computer engineering, electrical engineering, and signals and systems). A minimum of 24 credits is required.
- Student choosing this option should plan on taking CSCI 1300 and CSCI 2270.

Students interested in this option should contact the Electrical, Computer and Energy Engineering (http://www.colorado.edu/engineering/ academics/degree-programs/electrical-computer-engineering/) department, as this coursework can lead to one of that department's minors.

VIII. Engineering Physics/Physics

Students choosing this option are advised to take APPM 3570. MATH 3140 may also be useful for students interested in theoretical physics.

Students completing the physics option should have a minor in physics (https://catalog.colorado.edu/undergraduate/colleges-schools/ arts-sciences/programs-study/physics/physics-minor/). Check with the Physics Department (https://www.colorado.edu/physics/).

Code	Title	Credit Hours
Recommended Cou	rses ¹	
PHYS 2130	General Physics 3	3
or PHYS 2170	Foundations of Modern Physics	
PHYS 2150	Experimental Physics 2	1
PHYS 2210	Classical Mechanics and Mathematical Methods 1	3
PHYS 3210	Classical Mechanics and Mathematical Methods 2	3
PHYS 3220	Quantum Mechanics 1	3
PHYS 3310	Principles of Electricity and Magnetism 1	3
PHYS 3320	Principles of Electricity and Magnetism 2	3
PHYS 3330	Electronics for the Physical Sciences	2-3
or PHYS 4230	Thermodynamics and Statistical Mechanics	
Additional physics of	courses to total at least 24 credits.	2-3
Total Credit Hours		24

¹ Recommended courses after first-year physics.

IX. Finance

BCOR 1025 is a prerequisite for BCOR 2203 and BCOR 2204. Students are advised to substitute an applied math prob/stats course for this prerequisite.

Students are required to take APPM 3570 and STAT 4520 as part of the major's required 24 credits at 3000 level or above for the finance option. Students are advised to take APPM 4560 and STAT 4540 if time permits.

Students wishing to take College of Business courses cannot register until the first day of classes. However, students can register for BCOR/ FNCE courses in summer sessions. Alternatively, students can apply for admittance to the Actuarial Studies and Quantitative Finance Certificate Program (http://www.colorado.edu/asqf/.html). Students accepted into this program receive preferential treatment with respect to other nonbusiness students when registering for business courses. For more information, please see your applied math advisor.

Code	Title	Credit Hours
Recommended Basic	Courses	14-16
BCOR 2203	Principles of Accounting I	
BCOR 2204	Principles of Financial Management	
FNCE 3010	Corporate Finance	
ECON 2010 & ECON 2020 & ECON 3070 & ECON 3080	Principles of Microeconomics and Principles of Macroeconomics and Intermediate Microeconomic Theory and Intermediate Macroeconomic Theory	
ECON 4818	Introduction to Econometrics	
Additional Courses		
Select a minimum of meet the 24-credit rec be taken to complete Finance Certificate Pr	two of the following courses in order to quirement of the option. All of them must the requirements of the Quantitative ogram:	8-10
ACCT 3220	Corporate Financial Reporting 1	
FNCE 3030	Investment and Portfolio Management	
FNCE 4040	Derivative Securities	
FNCE 4820	Topics in Finance	
FNCE 4070	Financial Markets and Institutions	
Total Credit Hours		24
1 ECON 2010, ECON	I 2020 may not count toward the 24 credits of	f the

option requirement; however, they can be used to meet the 18-credit social science/humanities requirement of the College of Engineering.

Additional courses that may be taken as time permits:

Code	Title	Credit Hours
ACCT 3230	Corporate Financial Reporting 2	3
FNCE 4000	Financial Institutions Management	3
FNCE 4050	Capital Investment Analysis	3
FNCE 4060	Special Topics in Finance	1-6

X. Geographic Information Science (GIS)

Students completing the geographic information science option should qualify to receive a certificate in GIS and computational science. Check with the faculty contacts for the GIS Certificate Program (https:// www.colorado.edu/geography/undergraduate-certificate-gis-andcomputational-science/).

Code	Title	Credit Hours
GEOG 3023	Statistics and Geographic Data	4
CSCI 2270	Computer Science 2: Data Structures ¹	4
GEOG 3053	Geographic Information Science: Mapping	4
GEOG 4103	Geographic Information Science: Spatial Analytics	4
Additional Courses		
Additional courses to Possible choices incl	bring the total number of credits to 24. ude:	8
GEOG 4023	Advanced Quantitative Methods for Spatial Data	
GEOG 4303	Geographic Information Science: Spatial Programming	
GEOG 4403	Geographic Information Science: Space Time Analytics	
GEOG 4503	Geographic Information Science: Project Management	
GEOL 3050	GIS for Geologists	
Total Credit Hours		24

1 CSCI 1300 is a prerequisite for CSCI 2270.

XI. Geological Sciences

Students completing the geological sciences option should have a minor in geology (https://catalog.colorado.edu/undergraduate/collegesschools/arts-sciences/programs-study/geological-sciences/geologyminor/). Check with the Geological Sciences Department (https:// www.colorado.edu/geologicalsciences/).

Code	Title	Credit Hours
Required Courses		
One of the following i	ntroductory sequences:	6
GEOL 1010 & GEOL 1020	Exploring Earth and Dodos, Dinos, and Deinococcus: The History of a Habitable Planet	
GEOL 1040 & GEOL 1010	Geology of Colorado and Exploring Earth	
GEOL 1060 & GEOL 1010	Global Change: An Earth Science Perspective and Exploring Earth	
Required Lab Course:		
GEOL 1030	Introduction to Geology Laboratory 1	1
Additional Courses		
Additional courses to least two of these mu	bring the total number of credits to 24; at ist be at the 3000 level	17
GEOL 2700	Introduction to Field Geology	
GEOL 3010	Introduction to Mineralogy	
GEOL 3023	Statistics and Geographic Data	
GEOL 3120	Structural Geology	
GEOL 3410	Paleobiology	
GEOL 3430	Sedimentology and Stratigraphy	
GEOL 4093	Remote Sensing of the Environment	

Total Credit Hou	rs	24
XII. Mechani Students choosi take STAT 4000 math major.	cal Engineering ng this option are advised to or APPM 3570 and STAT 4520 as part o	of their applied
Students wishin MCEN advisor.	g to enroll in MCEN courses must do so	o through the
Code	Title	Credit Hours
Recommended (Courses	
MCEN 2023	Statics and Structures	3
MCEN 2043	Dynamics	3
MCEN 2063	Mechanics of Solids	3
MCEN 3012	Thermodynamics	3
MCEN 3021	Fluid Mechanics	3
MCEN 3022	Heat Transfer	3
MCEN 3025	Component Design	3
MCEN 4043	System Dynamics	3
Total Credit Hou	rs	24

Principles of Geomorphology

Total Credit Hours

GEOL 4241

XIII. Statistics and Data Science

Students will take the courses in statistics for the APPM Statistics Minor (https://catalog.colorado.edu/undergraduate/collegesschools/arts-sciences/programs-study/applied-mathematics/ statistics-minor/) plus additional coursework chosen from Computer Science (https://catalog.colorado.edu/undergraduate/collegesschools/engineering-applied-science/programs-study/computerscience/); College of Media, Communication and Information (https:// catalog.colorado.edu/undergraduate/colleges-schools/mediacommunication-information/); Technology, Arts and Media (https:// catalog.colorado.edu/undergraduate/colleges-schools/engineeringapplied-science/programs-study/technology-arts-media/); or another relevant area as approved by the advisor.

Students choosing this option must complete STAT 2600 as part of the statistics minor and CSCI 2270 is recommended.

Students completing the statistics & data science option may gualify for an applied mathematics minor in statistics (catalog.colorado.edu/ undergraduate/colleges-schools/arts-sciences/programs-study/appliedmathematics/statistics-minor/), and should check with their advisor for confirmation. Students may earn a BS in applied mathematics and a minor in statistics. The 12 upper-division statistics credits required for the minor may not be counted toward the 24 credits of upper-division math courses for the bachelor's degree.

XIV. Creative Technology and Design

Students are advised to take APPM 3570, APPM 4560 and APPM 4660 as part of their applied math coursework.

Students may wish to consider the creative technology and design minor (https://www.colorado.edu/atlas/academics/undergraduate/ctd-minor/).

Code	Title	Credit Hours
Required Courses		
ATLS 2000	The Meaning of Information Technology	3
ATLS 2100	Image	3
ATLS 2200	Web	3
ATLS 2300	Text	3
ATLS 1300	Computational Foundations 1	4
CSCI 2270	Computer Science 2: Data Structures ²	4
CSCI 3104	Algorithms ³	4
CSCI 4229	Computer Graphics	3
Additional Courses		
Recommended additi 24 credit hours:	ional courses to bring the total to at least	4
Advisor-approved t ATLAS/TAM Certif	technical electives to complete the icate in Digital Media	
CSCI 3202	Introduction to Artificial Intelligence	
CSCI 4448	Object-Oriented Analysis and Design	
Total Credit Hours		31

¹ This course may be used to satisfy *either* 3 credit hours of H&SS requirement or the applied math area of emphasis, but not both.

² CSCI 1300 is a prerequisite for CSCI 2270.

³ APPM 3170 or CSCI 2824 or ECEN 2703 or MATH 2001 are prerequisites for CSCI 3104.

Recommended Four-Year Plan of Study

Students must complete 128 hours for graduation.

Course	Title	Credit Hours
Year One		
Fall Semester		
APPM 1350	Calculus 1 for Engineers	4
CHEN 1201	General Chemistry for Engineers 1	4
CHEM 1114	Laboratory in General Chemistry 1	1
APPM 1650	Python for Mathematical and Statistical Applications	4
Humanities or So	cial Sciences Elective ¹	3
	Credit Hours	16
Spring Semester		
APPM 1360	Calculus 2 for Engineers	4
PHYS 1110	General Physics 1	4
Free Electives		6
Humanities or So	cial Sciences Elective ¹	3
	Credit Hours	17
Year Two		
Fall Semester		
APPM 2350	Calculus 3 for Engineers	4
PHYS 1120	General Physics 2	4
PHYS 1140	Experimental Physics 1	1
Technical Elective	es (Area of Emphasis)	3

Humanities or So	cial Sciences Elective ¹	4
	Credit Hours	16
Spring Semester		
APPM 2360	Introduction to Differential Equations with Linear Algebra	4
APPM 2460	Differential Equations Computer Lab (Recommended, but not required)	1
APPM 3310	Matrix Methods and Applications	3
Technical Elective	es (Area of Emphasis)	Э
Free Electives		3
Humanities or So	cial Sciences Elective ¹	3
	Credit Hours	17
Year Three		
Fall Semester		
APPM 4350	Methods in Applied Mathematics: Fourier Series and Boundary Value Problems	3
APPM 4440	Undergraduate Applied Analysis 1	3
Technical Elective	es (Area of Emphasis)	6
College-approved	writing course ²	3
	Credit Hours	15
Spring Semester		
APPM 3XXX		3
APPM 4360	Methods in Applied Mathematics: Complex Variables and Applications	3
Technical Elective	es (Area of Emphasis)	3
Free Electives		3
Humanities or So	cial Sciences Elective ¹	3
	Credit Hours	15
Vear Four		
Fall Semester		
	Intermediate Numerical Analysis 1	3
	Internetiate Numerical Analysis 1	3
Toobnical Elective	os (Aros of Emphasis)	6
Free Electives	es (Area of Emphasis)	
FIEE Electives	Oredit Hauna	10
a · a ·	Credit Hours	16
Spring Semester		
APPM 4660	Intermediate Numerical Analysis 2 (or Senior Sequence Course)	3
APPM 4XXX		3
Technical Elective	es (Area of Emphasis)	З
Free Electives		7
	Credit Hours	16
	Total Credit Hours	128

¹ Students may choose courses from the list of college-approved humanities and social sciences (HSS) electives (http://www.colorado.edu/engineering/academics/policies/hss/).

² Students may choose a course from the list of college-approved writing courses (http://www.colorado.edu/engineering/academics/ policies/hss/).

Learning Outcomes

Content Knowledge

Students completing the undergraduate degree in Applied Mathematics will be broadly knowledgeable in a number of mathematical areas including:

- · Differential and integral calculus in one and several variables.
- · Vector spaces and matrix algebra.
- · Ordinary and partial differential equations.
- At least one programming language.
- At least one application software package in either mathematics or statistics.
- · Methods of complex variables as used in applications.
- · Numerical solutions of linear and nonlinear problems.
- An in-depth knowledge of an area of application (statistics, an engineering discipline, a natural science field, or one of the quantitative areas of business and economics.

Student Outcomes

Upon graduation, students will have:

- Problem-solving and modeling skills that allow them to formulate a real-world problem.
- Developed techniques and strategies to implement a numerical solution.
- Communicate that solution clearly and concisely in oral and written forms.

Bachelor's-Accelerated Master's Degree Program(s)

The Bachelor's–Accelerated Master's (BAM) degree program options offer currently enrolled CU Boulder undergraduate students the opportunity to receive a bachelor's and master's degree in a shorter period of time. Students receive the bachelor's degree first, but begin taking graduate coursework as undergraduates (typically in their senior year). Because some courses are allowed to double count for both the bachelor's and the master's degrees, students receive a master's degree in less time and at a lower cost than if they were to enroll in a stand-alone master's degree program after completion of their baccalaureate degree. In addition, staying at CU Boulder to pursue a bachelor's–accelerated master's program enables students to continue working with their established faculty mentors.

Admissions Requirements

BS and MS in Applied Mathematics

In order to gain admission to the BAM program named above, a student must meet the following criteria:

- · Have a cumulative GPA of 3.40 or higher
- · Have a minimum GPA of 3.40 in APPM and MATH courses
- · Have at least junior class standing
- · Completion of all MAPS requirements and no deficiencies remaining
- Satisfactory completion of at least two APPM courses numbered 3000 or higher
- Two letters of recommendation from CU Boulder Department of Applied Mathematics faculty

BS in Applied Mathematics, MS in Technology, Cybersecurity and Policy

In order to gain admission to the BAM program named above, a student must meet the following criteria:

- · Have a cumulative GPA of 3.250 or higher
- Have a major GPA of 3.250 or higher
- · Have at least junior class standing
- · Completion of all MAPS requirements and no deficiencies remaining

Program Requirements

For either BAM program named above, students may take up to and including 12 hours while in the undergraduate program which can later be used toward the master's degree. However, only six credits may be double counted toward the bachelor's degree and the master's degree. Students must apply to graduate with the bachelor's degree, and apply to continue with the master's degree, early in the semester in which the undergraduate requirements will be completed.

Please see the Applied Mathematics/Applied Mathematics BAM degree program (https://www.colorado.edu/amath/academics/bs-ms-program/) or Applied Mathematics/TCP BAM degree program (https://www.colorado.edu/itp/current-students/undergraduate/bsms-degree/) web pages for more information.