CHEMICAL AND BIOLOGICAL ENGINEERING

The Department of Chemical and Biological Engineering (http://www.colorado.edu/chbe/) offers degrees at the bachelor’s, master’s and doctoral levels. The department offers two distinct BS degree programs, one in chemical engineering and one in biological engineering.

Chemical engineering prepares students for careers in a range of industries including energy, consumer products, sustainability and semiconductors. Modern industry depends on chemical engineers to tailor manufacturing technology to the requirements of its products, and chemical engineers play a central role in development of new polymeric materials, alternative energy sources and safe, efficient processes for chemical synthesis.

The biological engineering undergraduate program prepares students for careers in biotechnology, pharmaceuticals, medicine and materials. Exploring the structure of protein molecules, the functioning of cells and the growth and regeneration of tissues are among the new frontiers that chemical and biological engineering students will address.

In addition to the standard chemical and biological curriculum, a premedicine curriculum is also offered. The chemical and biological engineering department has active research and educational programs in the exciting field of biotechnology, which involves the use of individual cells and their components for producing pharmaceuticals and other important products. The department is also active in biomedical engineering, which involves medical devices, tissues and biomaterials.

There are opportunities to specialize via electives, independent study, research and senior thesis.

Students can carry out part of their studies in another country while staying on track to a four-year degree. This is a wonderful opportunity to delve into a new culture and learning environment, and can be valuable professional experience given the international ties of many companies and researchers. Many faculty members have significant international experience.

Course codes for these programs are CHEN and BIEN.

Senior Thesis
The department offers this program for undergraduates with a strong interest in research. The student carries out a yearlong project under the direction of a faculty member in taking CHEN 4130 (for CHEN students) or CHEN 4810 (for BIEN students). Students must apply at the end of their junior year.

Research Facilities
Chemical and biological engineering research facilities are extensive and modern. Nearly all research equipment is interfaced to computers for automated data collection, monitoring and control. A full description of chemical and biological engineering research facilities can be found on the department website. (http://www.colorado.edu/chbe/)

Bachelor’s Degrees

• Chemical Engineering - Bachelor of Science (BSCHE) (https://catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/chemical-biological-engineering/chemical-engineering-bachelor-science-bsche/)

• Chemical Engineering - Bachelor of Science (BSBE) (https://catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/chemical-biological-engineering/chemical-engineering-bachelor-science-bsbe/)

Faculty
While many faculty teach both undergraduate and graduate students, some instruct students at the undergraduate level only. For more information, contact the faculty member’s home department.

Anseth, Kristi S. (https://experts.colorado.edu/display/fisid_103471/)
Distinguished Professor; PhD, University of Colorado Boulder

Bay, R. Könane (https://experts.colorado.edu/display/fisid_172688/)
Assistant Professor; PhD, University of Massachusetts at Amherst

Bowman, Christopher N. (https://experts.colorado.edu/display/fisid_102043/)
Distinguished Professor; PhD, Purdue University

Bryant, Stephanie J. (https://experts.colorado.edu/display/fisid_111810/)
Professor; PhD, University of Colorado Boulder

Burdick, A. Jason (https://experts.colorado.edu/display/fisid_168868/)
Professor; PhD, University of Colorado Boulder

Cha, Jennifer N. (https://experts.colorado.edu/display/fisid_151746/)
Professor; PhD, University of California, Santa Barbara

Chatterjee, Anushree
Associate Professor; PhD, University of Minnesota

Clough, David Edwards (https://experts.colorado.edu/display/fisid_102332/)
Professor Emeritus; PhD, University of Colorado Boulder

Davis, Robert H. (https://experts.colorado.edu/individual/fisid_113653/) Distinguished Professor; PhD, Stanford University

deGrazia, Janet (https://experts.colorado.edu/display/fisid_107661/)
Professor Emeritus; PhD, University of Colorado Boulder

Falconer, John L. (https://experts.colorado.edu/display/fisid_101426/)
Professor Emeritus; PhD, Stanford University

Fox, Jerome Michael (https://experts.colorado.edu/display/fisid_156682/)
Assistant Professor; PhD, University of California, Berkeley

Goodwin, Andrew Pratt (https://experts.colorado.edu/display/fisid_151595/)
Associate Professor; PhD, University of California, Berkeley

Heinz, Hendrik (https://experts.colorado.edu/display/fisid_156488/)
Professor; PhD, ETH Zurich (Switzerland)

Holewinski, Adam P. (https://experts.colorado.edu/display/fisid_155859/)
Assistant Professor; PhD, University of Michigan Ann Arbor

Hrenya, Christine M.
Professor; PhD, Carnegie Mellon University

Kaar, Joel L. (https://experts.colorado.edu/display/fisid_148491/)
Associate Professor; PhD, University of Pittsburgh
Courses

**CHEN 1000 (3) Creative Technology**
Delve into cutting-edge topics such as the science of climate change, biotechnology, biomedical devices, advanced materials, renewable energy, and environmental sustainability! This course will introduce undergraduate students to the most recent concepts in technology and how these concepts impact all aspects of life, including human health and the health of the planet.

**Additional Information:** Arts Sci Core Curr: Natural Science Non-Sequence Arts Sci Gen Ed: Distribution-Natural Sciences

**CHEN 1201 (4) General Chemistry for Engineers 1**
Designed to meet the general chemistry requirement for some engineering students and serve as part one for students whose academic plans require advanced work in chemistry. Topics include components of matter, stoichiometry, electron configuration, chemical bonding, molecular shapes, covalent bonding, classes of reactions, thermochimistry, gases, atomic structure, organic compounds, intermolecular forces, and phase equilibria. Examples and problems illustrate the application of chemistry to engineering sub-disciplines. Department enforced prerequisites: High school Algebra, one year of high school Chemistry or CHEM 1021 (minimum grade C).

**Equivalent - Duplicate Degree Credit Not Granted:** CHEN 1211, CHEM 1113, CHEM 1400 and MCEN 1024

**Requisites:** Restricted to College of Engineering (ENGRU) undergraduates and IUT On Track applicants only.

**Recommended:** Not recommended for students with grade below B- in CHEM 1021.

**CHEN 1203 (2) General Chemistry for Engineers 2**
Designed for students whose academic plans require advanced work in chemistry. Topics include kinetics, solubility/solubility equilibria, acid-base, buffers and titrations, thermodynamics, and electrochemistry. Examples and problems illustrate the application of chemistry to engineering sub-disciplines. AP Chemistry credit not accepted in lieu of any of these prereq classes.

**Equivalent - Duplicate Degree Credit Not Granted:** CHEN 1211 or CHEM 1133 or CHEM 2100

**Requisites:** Requires prerequisite courses of CHEN 1201 or CHEM 1113 or MCEN 1024 (all minimum grade C). Restricted to College of Engineering undergraduates (ENGRU) and IUT On Track applicants only.

**Recommended:** Corequisite CHEM 1221.

**CHEN 1211 (4) Accelerated Chemistry for Engineers**
One-semester lecture and recitation course designed for engineering students with more advanced chemistry backgrounds. Topics include stoichiometry; thermodynamics; gases, liquids, and solids; equilibrium; acids and bases; bonding concepts; kinetics; reactions; and materials science. Examples and problems illustrate the application of chemistry to engineering sub-disciplines. Department enforced prerequisite of 3, 4 or 5 on the AP Chemistry exam or equivalent IB scores or a passing score on the "Chemistry Readiness Exam for Engineers."

**Equivalent - Duplicate Degree Credit Not Granted:** CHEM 1113 or CHEM 1400 or CHEN 1201 or CHEN 1203 or MCEN 1024

**Requisites:** Restricted to College of Engineering (ENGRU) undergraduates and IUT On Track applicants only.

**Recommended:** Corequisite CHEM 1221.
CHEN 1300 (1) Introduction to Chemical and Biological Engineering
Meets for one lecture per week. Examines the different fields of chemical engineering and chemical & biological engineering including energy, materials, pharma, and biomedical; addresses how to be successful in college and engineering; and showcases some of the opportunities here at CU.
Requisites: Restricted to Chemical Engineering, Chemical Biological Engineering, Biological Engineering, and open option (XXEN) majors only with a maximum of 50 credit hours.

CHEN 1310 (3) Introduction to Engineering Computing
Introduces the use of computers in engineering problem solving, including elementary numerical methods. Teaches programming fundamentals, including data and algorithm structure, and modular programming. Software vehicles include Excel/Vba and Matlab. Formerly GEEN 1300 and COEN 1300.
Requisites: Requires prerequisite or corequisite course of APPM 1340 or 1345 or 1350 or GEEN 3330 or MATH 1300 (all minimum grade C-).
Restricted to College of Engineering majors and IUT On Track applicants only

CHEN 1400 (3) Drugs, Driving and Dynamic Processes
Project-based course that applies the principles of chemistry, biology, mechanics and electronics to the production and application of sustainable commodities (fuels, drugs, chemicals, and energy). Examples include student-developed green vehicles, sustainable nutraceuticals, or renewable electrical generation.
Requisites: Restricted to Chemical Engineering (CHEN) and Chemical and Biological Engineering (CBEN), and open option (XXEN) majors only with a maximum of 70 credit hours.

CHEN 2120 (3) Chemical Engineering Material and Energy Balances
Provides a basic understanding of chemical engineering calculations involving material and energy balances around simple chemical processes.
Requisites: Requires prerequisite courses of CHEN 1211 or CHEN 1201 or CHEM 1400 or CHEM 1113 or MCEN 1024 (all min grade C-). Requires corequisite courses of CHEN 1310 (CHEN 1203 or CHEM 1133).
Restricted to Coll of Engineering mjr and IUT On Track applicants only

CHEN 2840 (1-4) Independent Study
Available to sophomores with approval of Department of Chemical Engineering. Subject arranged to fit needs of student.
Repeatable: Repeatable for up to 6.00 total credit hours.

CHEN 3010 (3) Applied Data Analysis
Teaches students to analyze and interpret data. Topics include engineering measurements, graphical presentation and numerical treatment of data, statistical inference, and regression analysis.
Requisites: Requires prerequisite course of CHEN 1310 and APPM 2360 or MATH 2130 and MATH 3430 (all minimum grade C-). Restricted to College of Engineering students only.

CHEN 3200 (3) Chemical Engineering Fluid Mechanics
Introduces fluid mechanics and momentum transfer, emphasizing the application of these principles to chemical engineering systems.
Equivalent - Duplicate Degree Credit Not Granted: CVEN 3313 and MCEN 3021
Requisites: Requires prereq courses of PHYS 1110 and (APPM 2350 or MATH 2400) and (CHEN 2120 or CVEN 2121 or GEEN 2851 or MCEN 2023) (all min grade C-). Requires prereq or coreq courses of APPM 2360 or (MATH 2130 and MATH 3430) (min grade C-). Restricted to ENGR mjr

CHEN 3210 (4) Chemical Engineering Heat and Mass Transfer
Examines conservation and transfer of mass and thermal energy. Focuses on conduction and convection of heat in the context of chemical processes and heat exchangers. Addresses radiation. Also studies mass transfer rate processes, including diffusion, microscopic material balances, and correlations for mass transfer coefficients.
Requisites: Requires prerequisite courses of (CHEN 3200 or MCEN 3021) and (APPM 2360 or MATH 3430) (minimum grade C-). Restricted to College of Engineering majors only

CHEN 3211 (1) Chemical Engineering Mass Transfer
Study of mass transfer rate processes, including diffusion, convection, microscopic material balances, and correlations for mass-transfer coefficients. Requires department approval and a department-approved heat transfer course.
Requisites: Requires prerequisite course of either CHEN 3200 or MCEN 3021 (minimum grade C-). Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 3220 (3) Chemical Engineering Separations
Studies separation methods including distillation, absorption, extraction, and membranes, and graphical and computer-based solutions to separation problems. Applies mass transfer rate theory to packed and tray columns.
Requisites: Requires prerequisite courses of CHEN 3210 and CHEN 3320 and (CHEN 4521 or a prerequisite or corequisite of CHEM 4531) (all minimum grade C-).
Restricted to College of Engineering majors only

CHEN 3320 (3) Chemical Engineering Thermodynamics
Applies thermodynamic principles to nonideal systems, phase equilibrium, chemical equilibrium, power generation, refrigeration, and chemical processes.
Requisites: Requires prerequisite courses of CHEN 2120 and (CHEN 4521 or a prerequisite or corequisite of CHEM 4531) (min grade C-). Restricted to College of Engineering majors only

CHEN 3360 (3) Energy Fundamentals
Explains the most important energy technologies and systems; provides tools to analyze performance using science and engineering principles. This course will investigate important energy concepts from sources and extraction to utilization, storage and efficiency. Topics include fossil fuels, hydropower, renewable energy, biofuels, carbon capture and waste disposal.
Requisites: Requires prerequisite courses of CHEN 1201 or CHEN 1211 or CHEM 1113 or MCEN 1024 and PHYS 1110 and APPM 1360 or MATH 2300 (all minimum grade C-). Restricted to College of Engineering majors only

CHEN 3840 (1-4) Independent Study
Available to juniors with approval of the Department of Chemical Engineering. Subject arranged to fit needs of the student.
Repeatable: Repeatable for up to 6.00 total credit hours.
Requisites: Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 3930 (6) Chemical Engineering Cooperative Education
Students enrolled in this course participate in a previously arranged, department-sponsored cooperative education program.
Requisites: Requires prerequisite course of CHEN 2120 (minimum grade C-). At least a 2.85 cumulative GPA is required. Restricted to College of Engineering majors only.
Recommended: Prerequisite 3.00 GPA or higher.
CHEN 4010 (2) Chemical Engineering Senior Thesis 1
Provides an opportunity for advanced students to conduct exploratory research in chemical engineering.
**Requisites:** Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 4020 (2) Chemical Engineering Senior Thesis 2
Continuation of CHEN 4010. This course and CHEN 4020 can substitute for CHEN 4130.
**Requisites:** Requires prerequisite course of CHEN 4010 (minimum grade C-). Restricted to College of Engineering students only.

CHEN 4090 (1) Undergraduate Seminar
Provides chemical engineering career and professional information, facilitates contact with faculty and industry representatives, and improves communication and leadership skills. Consists of a series of seminars and field trips and requires a research project involving a written and oral report.
**Requisites:** Restricted to Chemical (CHEN) Engineering or Chemical and Biological (CBEN) Engineering majors only.

CHEN 4130 (3) Chemical Engineering Laboratory
Involves planning and execution of chemical engineering experiments on mass transfer operations, separations, and chemical reactors. Interprets experimental data with theoretical principles and statistical analysis. Emphasizes communication with written memos, full reports, and oral presentations.
**Requisites:** Requires prerequisite courses of CHEN 3010 and CHEN 3220 and CHEN 3320 and CHEN 4330 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4330 (3) Kinetics and Reactor Design
Introduces chemical kinetics and chemical reactor design. Involves mass and energy balances for steady-state and transient reactor systems. Also covers residence time distribution, mass transfer, catalytic reactions, and multiple steady states in reactors.
**Requisites:** Requires prerequisite courses of CHEN 3010 and CHEN 3210 and (CHEN 4521 or CHEM 4531) (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4440 (3) Chemical Engineering Materials
Introduces materials engineering, including properties of polymers, metals, ceramics, and semiconductors, especially as related to chemical engineering processes.
**Requisites:** Requires prerequisite courses of CHEN 3320 and CHEM 3311 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4450 (3) Polymer Chemistry
Introduces polymer science with a focus on polymer chemistry and polymerization reactions. Focuses on polymerization reaction engineering and how polymer properties depend on structure.
**Equivalent - Duplicate Degree Credit Not Granted:** CHEN 5450
**Requisites:** Requires prerequisite courses of CHEN 4830 or CHEN 4330 and CHEM 3311 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4460 (3) Polymer Engineering
Introductory polymer engineering course reviewing basic terminology and definitions; the properties and synthetic routes of important industrial polymers; and processing of polymers and their applications.
**Equivalent - Duplicate Degree Credit Not Granted:** CHEN 5460
**Requisites:** Requires prerequisite courses of CHEM 3311 and CHEN 3320 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4480 (3) Solar Cells and Optical Devices for Sustainable Buildings
This course assumes no background in electronic materials and explains how silicon and cutting-edge metal halide perovskite solar cells are designed, fabricated and characterized. Topics will include optics, band diagrams, wafer fabrication, most thin film deposition techniques, module design and economics. Other optical devices that can help the world rapidly reduce its carbon emissions, such as light-emitting diodes and energy saving windows with dynamic tinting, will also be covered.
**Equivalent - Duplicate Degree Credit Not Granted:** CHEN 5480
**Recommended:** Prerequisite a course in materials science (for example CHEN 4440), the physics of electromagnetism and optics at a very basic level.

CHEN 4490 (3) Electrochemical Engineering
This course discusses fundamentals and applications of electrochemical systems from an engineering perspective. Aspects of thermodynamics, reaction kinetics, and transport phenomena relevant to the description of electrode/electrolyte interfaces and charge transfer reactions are covered. Topics include cell equilibrium (Nernst equation), reactions rates within Butler-Volmer and Marcus theory, electrochemical double layer structure, ion transport (Poisson-Nernst-Planck equation), potential and current distributions in electrochemical cells, and experimental electroanalytical techniques. Applications include fuel cells, electrolyzers, batteries, sensors, and corrosion. Contact instructor to request to take prerequisites as corequisites.
**Equivalent - Duplicate Degree Credit Not Granted:** CHEN 5490
**Requisites:** Requires prerequisite courses of (CHEN 4330 or CHEN 4830) and PHYS 1120 (minimum grade C-). Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 4520 (3) Chemical Process Design
Studies applied chemical process design including equipment specification and economic evaluation.
**Requisites:** Requires prerequisite courses of CHEN 3010 and CHEN 3210 and CHEN 3220 and CHEN 4330 or CHEN 4830 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4521 (3) Physical Chemistry for Engineers
Examines the laws of classical thermodynamics followed by physical transformations of pure substances, the thermodynamics of simple mixtures and chemical equilibrium. Applies quantum theory to atomic and molecular structure. Presents the concepts and applications of statistical thermodynamics. Introduces rates of chemical reactions, reaction dynamics and catalysis.
**Requisites:** Requires prereq courses of APPM 2350 or MATH 2400 and APPM 2360 or MATH 2430 or MATH 2130 and MATH 3430 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4530 (2) Chemical Engineering Design Project
Provides a team-based capstone design experience for chemical engineering students. Projects are sponsored by industry and student design teams collaborate with industrial consultants. Projects consider chemical process and product design with emphasis on economic analysis. Deliverables include an oral mid-project design review, a final oral presentation and final written design report.
**Requisites:** Requires prerequisite course of CHEN 4520 (minimum grade C-). Restricted to College of Engineering majors only.
CHEN 4570 (4) Process Dynamics and Control
Examines principles of controls theory and controls application to chemical processes. Focuses on feedback, feedforward and distributed control systems. Laboratory sessions cover measurement fundamentals, signal transmission, dynamic testing, control system synthesis, and implementation and adjustment.
Requisites: Requires prerequisite courses of CHEN 3220 and CHEN 4330 or BIEN 4830 and PHYS 1120 and APPM 2360 or MATH 2130 and MATH 3430 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4630 (1) Intellectual Property Law and Engineering
Learn the fundamentals of the various types of intellectual property, obtain the ability to search the USPTO database for patents, learn the difference between provisional patents, utility patents and foreign patents and learn the timing requirements related to the filing of patents and public disclosure, use, and/or sale of an invention.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5630
Requisites: Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.

CHEN 4650 (3) Particle Technology
Aims to identify the important physical mechanisms occurring in processes involving particles, formulate and solve mathematical descriptions of such processes, and analyze experimental and theoretical results in both a qualitative and quantitative manner. Teaches students to apply this knowledge to the design of particulate systems. Conveys the breadth and depth of natural and industrial applications involving particulates.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5650
Requisites: Requires prerequisite courses of APPM 2360 or MATH 2130 and MATH 3430 and CHEN 3200 or MCEN 3021 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4804 (3) Protein and Enzyme Engineering
This course reviews various applications of protein and enzyme engineering and covers key concepts in protein and enzyme design, including protein structure-function relationships; rational and evolutionary engineering approaches; genetic code expansion; cell-free protein synthesis; computational design; and biophysical methods for protein characterization. Additionally, students gain valuable experience reading, analyzing, and interpreting research results from scientific literature, as well as drafting an original research proposal.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5804
Requisites: Requires prerequisite courses of CHEN 3320 and BIEN 2810 and BCHM 4611 (minimum grade C-). Restricted to College of Engineering undergraduates only.

CHEN 4831 (1) Biokinetics and Bioreactors Module
Study of biokinetics of enzyme reactions, cell growth and bioproduct formation. Design of batch, semi-batch and continuous bioreactors. Overview of biotechnology industry. Introduction to pharmacokinetics and drug delivery. Requires department approval and a department-approved kinetics and reactor design course.
Requisites: Requires prerequisite course CHEN 3210 (minimum grade C-). Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 4836 (3) Nanomaterials
Presents fundamental chemical and physical concepts that give rise to the unique optical, electronic and magnetic properties of nanoscale materials. Introduces important synthetic routes for producing nanomaterials, and interparticle forces governing colloidal behavior and self-assembly. Discusses current and potential applications in catalysis, biomedicine, renewable energy, and other fields.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5836
Requisites: Require prerequisite or corequisite of CHEN 3320 (minimum grade C-). Restricted to College of Engineering students only.

CHEN 4838 (1-3) Special Topics in Chemical and Chemical & Biological Engineering
Examines a special topic in Chemical or Chemical & Biological Engineering.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.

CHEN 4840 (1-4) Independent Study
Available to seniors with approval of chemical engineering department. Subject arranged to fit needs of student.
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.
Requisites: Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.