The Department of Chemical and Biological Engineering offers degrees at the bachelor’s, master’s and doctoral levels. The department offers two distinct BS degree programs, one in chemical engineering and one in chemical and biological engineering. Both programs are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

The standard chemical engineering undergraduate program includes curricular options in energy, materials, and premedicine. There are active and exciting research and educational programs in biotechnology, pollution control, novel membrane separations, and advanced polymeric and ceramic materials. Chemical engineering prepares students for careers in a range of industries including energy, consumer products, petrochemicals, semiconductors, medicine, environment, and materials. Modern industry depends on chemical engineers to tailor manufacturing technology to the requirements of its products, and chemical engineers play a central role in development of new polymeric materials, alternative energy sources, and safe, efficient processes for chemical synthesis.

The chemical and biological engineering undergraduate program prepares students for careers in biotechnology, pharmaceuticals, medicine, and materials. This degree program adapts a core chemical engineering curriculum to allow for greater depth in biological aspects of chemical engineering. Exploring the structure of protein molecules, the functioning of cells, and the growth and regeneration of tissues are among the new frontiers that chemical and biological engineering students will address.

In addition to the standard chemical and biological curriculum, a premedicine curriculum is also offered. The chemical and biological engineering department has active research and educational programs in the exciting field of biotechnology, which involves the use of individual cells and their components for producing pharmaceuticals and other important products. The department is also active in biomedical engineering, which involves medical devices, tissues and biomaterials.

There are opportunities to specialize via electives, independent study, and research, and the BS in chemical engineering also offers optional variations to the core curriculum that allow students to specialize in energy and materials aspects of chemical engineering.

Given the international nature of most large chemical and engineering corporations and international cooperation in scientific and engineering research, students may carry out part of their studies in another country and are encouraged to consider this opportunity. Many faculty members have significant international experience.

Course code for this program is CHEN.

Cooperative Education and Internships

The Department of Chemical and Biological Engineering offers a formal Co-Op Program, where students obtain a BS in chemical engineering or a BS in chemical and biological engineering and significant industrial experience in five years.

Senior Thesis

The department offers this program for undergraduates with a strong interest in research. The student carries out a yearlong project under the direction of a faculty member in lieu of taking CHEN 4130 (for ChE students) or CHEN 4810 (for ChBE students). Students must apply at the end of their junior year.

Research Facilities

Chemical and biological engineering research facilities are extensive and modern. Nearly all research equipment is interfaced to computers for automated data collection, monitoring, and control. A full description of chemical engineering research facilities can be found on the department website. (http://www.colorado.edu/chbe)

Bachelor’s Degrees

- Chemical and Biological Engineering Bachelor of Science (BS) (catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/chemical-biological-engineering/chemical-biological-engineering-bachelor-science-bscb)
- Chemical Engineering Bachelor of Science (BS) (catalog.colorado.edu/undergraduate/colleges-schools/engineering-applied-science/programs-study/chemical-biological-engineering/chemical-engineering-bachelor-science-bsche)

Faculty

While many faculty teach both undergraduate and graduate students, some instruct students at the undergraduate level only. For more information, contact the faculty member’s home department.

Anseth, Kristi (https://experts.colorado.edu/display/fisid_103471)
Distinguished Professor; PhD, University of Colorado Boulder

Bowman, Christopher (https://experts.colorado.edu/display/fisid_102043)
Distinguished Professor; Professor; PhD, Purdue University

Bryant, Stephanie J (https://experts.colorado.edu/display/fisid_111810)
Associate Professor; PhD, University of Colorado Boulder

Cha, Jennifer N (https://experts.colorado.edu/display/fisid_151746)
Associate Professor; PhD, University of California-Santa Barbara

Chatterjee, Anushree (https://experts.colorado.edu/display/fisid_151712)
Assistant Professor; PhD, University of Minnesota Central office

Clough, David Edwards (https://experts.colorado.edu/display/fisid_102332)
Professor; PhD, University of Colorado Boulder

Davis, Robert H (https://experts.colorado.edu/display/fisid_1505896)
Professor; PhD, Stanford University

deGrazia, Janet (https://experts.colorado.edu/display/fisid_107661)
Senior Instructor; PhD, University of Colorado Boulder

Falconer, John L (https://experts.colorado.edu/display/fisid_101426)
Professor; PhD, Stanford University

Fox, Jerome Michael (https://experts.colorado.edu/display/fisid_156682)
Assistant Professor; PhD, University of California-Berkeley

Gill, Ryan T. (https://experts.colorado.edu/display/fisid_122697)
Professor; PhD, University of Maryland College Park Campus

Gin, Douglas L. (https://experts.colorado.edu/display/fisid_122861)
Professor; PhD, California Institute of Technology
Courses

CHEN 1211 (4) General Chemistry for Engineers
One-semester lecture and recitation course designed to meet the general chemistry requirement for engineering students. Topics include stoichiometry; thermodynamics; gases, liquids, and solids; equilibrium; acids and bases; bonding concepts; kinetics; reactions; and materials science. Examples and problems illustrate the application of chemistry to engineering sub-disciplines. Department enforced prerequisites: one year of high school chemistry or CHEM 1021 (min. grade C-) and high school algebra. Not recommended for students with grade below B- in CHEM 1021.

Equivalent - Duplicate Degree Credit Not Granted: CHEM 1113 or CHEM 1114 or CHEM 1400 or MCEN 1024

Requisites: Restricted to College of Engineering (ENGRU) undergraduates only.

Recommended: Corequisite CHEM 1221.

CHEN 1300 (1) Introduction to Chemical Engineering
Meets for one lecture per week. Introduces chemical engineering emphasizing history of the profession, curriculum, chemical industry, and industrial chemistry. Includes industry visits, oral presentations, faculty and professional meetings, and development of a goals statement.

Requisites: Restricted to Chemical (CHEN) Engineering or Chemical and Biological (CBEN) Engineering majors only.

CHEN 1310 (3) Introduction to Engineering Computing
Introduces the use of computers in engineering problem solving, including elementary numerical methods. Teaches programming fundamentals, including data and algorithm structure, and modular programming. Software vehicles include Excel/Vba and Matlab. Formerly GEEN 1300 and COEN 1300.

Requisites: Requires prerequisite or corequisite course of APPM 1340 or 1345 or 1350 or MATH 1300 (minimum grade C-). Restricted to College of Engineering majors or Pre-Engineering Arts and Sciences (PREN-COS) students only.

CHEN 2120 (3) Chemical Engineering Material and Energy Balances
Provides a basic understanding of chemical engineering calculations involving material and energy balances around simple chemical processes.

Requisites: Requires prerequisite courses of CHEN 1211 or CHEM 1133 and CHEN 1310 or GEEN 1300 or COEN 1300 (all minimum grade C-). Restricted to College of Engineering majors only

CHEN 2810 (3) Biology for Engineers
Develops a basic understanding of the science of biology, including an introduction to the disciplines of biochemistry, cell organization, metabolism, genetics, genomics, molecular biology, recombinant DNA technology and evolution. Provides a basic introduction to several key techniques used in biological engineering laboratories. Uses examples of complex and creative structures engineered by natural processes.

Requisites: Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 2840 (1-4) Independent Study
Available to sophomores with approval of Department of Chemical Engineering. Subject arranged to fit needs of student.

Repeatable: Repeatable for up to 6.00 total credit hours.
CHEN 3010 (3) Applied Data Analysis
Teaches students to analyze and interpret data. Topics include engineering measurements, graphical presentation and numerical treatment of data, statistical inference, and regression analysis.
Requisites: Requires prerequisite course of CHEN 1310 (formerly GEEN 1300/COEN 1300) and APPM 2360 (all minimum grade C). Restricted to students with 57-180 credits (Junior or Senior) College of Engineering students only.

CHEN 3200 (3) Chemical Engineering Fluid Mechanics
Introduces fluid mechanics and momentum transfer, emphasizing the application of these principles to chemical engineering systems.
Equivalent - Duplicate Degree Credit Not Granted: CVEN 3313 and GEEN 3853 and MCEN 3021
Requisites: Requires prerequisite courses of APPM 2350 or MATH 2400 (min grade C) and MCEN 2023 or CHEN 2120 (min grade C). Requires prerequisite or corequisite course of APPM 2360 (min grade C). Restricted to College of Engineering majors only.

CHEN 3210 (3) Chemical Engineering Heat Transfer
Examines conservation and transfer of thermal energy. Focuses on conduction and convection of heat in the context of chemical processes, with a special focus on heat exchangers. Also studies thermal radiation.
Requisites: Requires prerequisite course of either CHEN 3200 or MCEN 3021 (minimum grade C). Restricted to College of Engineering majors only.

CHEN 3220 (3) Chemical Engineering Separations and Mass Transfer
Studies separation methods including distillation, absorption, and extraction, and graphical and computer-based solutions to separation problems. Also studies mass transfer rate processes, including diffusion, microscopic material balances, and correlations for mass transfer coefficients. Applies mass transfer rate theory to packed and tray columns.
Requisites: Requires prerequisite courses of CHEN 3210 or MCEN 3022 and CHEN 3320 (all minimum grade C). Restricted to College of Engineering majors only.

CHEN 3320 (3) Chemical Engineering Thermodynamics
Applies thermodynamic principles to nonideal systems, phase equilibrium, chemical equilibrium, power generation, refrigeration, and chemical processes.
Requisites: Requires prerequisite courses of CHEN 2120 (minimum grade C) and CHEN 4521 or CHEM 4511 and CHEM 4531 (all minimum grade C). Restricted to College of Engineering majors only.

CHEN 3660 (3) Energy Fundamentals
Explains the most important energy technologies and systems; provides tools to analyze performance using science and engineering principles. This course will investigate important energy concepts from sources and extraction to utilization, storage and efficiency. Topics include fossil fuels, hydropower, renewable energy, biofuels, carbon capture and waste disposal.
Requisites: Requires prerequisite courses of CHEN 1211 or CHEM 1133 or MCEN 1024 and PHYS 1110 and APPM 1360 or MATH 2300 (all minimum grade C). Restricted to College of Engineering majors only.
Grading Basis: Letter Grade

CHEN 3840 (1-4) Independent Study
Available to juniors with approval of the Department of Chemical Engineering. Subject arranged to fit needs of the student.
Repeatable: Repeatable for up to 6.00 total credit hours.
Requisites: Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 3930 (6) Chemical Engineering Cooperative Education
Students enrolled in this course participate in a previously arranged, department-sponsored cooperative education program. 00 GPA or higher.
Requisites: Requires prerequisite course of CHEN 2120 (minimum grade C). At least a 2.85 cumulative GPA is required. Restricted to College of Engineering majors only.
Recommended: Prerequisite 3.

CHEN 4010 (2) Chemical Engineering Senior Thesis 1
Provides an opportunity for advanced students to conduct exploratory research in chemical engineering.
Requisites: Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 4020 (2) Chemical Engineering Senior Thesis 2
Continuation of CHEN 4010. This course and CHEN 4020 can substitute for CHEN 4130.
Requisites: Restricted to College of Engineering (ENGRU) undergraduates only.

CHEN 4090 (1) Undergraduate Seminar
Provides chemical engineering career and professional information, facilitates contact with faculty and industry representatives, and improves communication and leadership skills. Consists of a series of seminars and field trips and requires a research project involving a written and oral report.
Repeatable: Repeatable for up to 3.00 total credit hours.
Requisites: Restricted to Chemical (CHEN) Engineering or Chemical and Biological (CBEN) Engineering majors only.

CHEN 4130 (3) Chemical Engineering Laboratory
Involves planning and execution of chemical engineering experiments on mass transfer operations, separations, and chemical reactors. Interprets experimental data with theoretical principles and statistical analysis. Emphasizes communication with written memos, full reports, and oral presentations.
Requisites: Requires prerequisite courses of CHEN 3010 and CHEN 3220 and CHEN 3320 and CHEN 4330 (all minimum grade C). Restricted to College of Engineering majors only.

CHEN 4330 (3) Chemical Engineering Reaction Kinetics
Introduces chemical kinetics and chemical reactor design. Involves mass and energy balances for steady-state and transient reactor systems. Also covers residence time distribution, mass transfer, catalytic reactions, and multiple steady states in reactors.
Requisites: Requires prerequisite courses of CHEN 3320 and APPM 2360 (all minimum grade C). Restricted to College of Engineering majors only.

CHEN 4440 (3) Chemical Engineering Materials
Introduces materials engineering, including properties of polymers, metals, ceramics, and semiconductors, especially as related to chemical engineering processes.
Requisites: Requires prerequisite courses of CHEN 3320 and CHEN 3311 (all minimum grade C). Restricted to College of Engineering majors only.

CHEN 4450 (3) Polymer Chemistry
Introduces polymer science with a focus on polymer chemistry and polymerization reactions. Focuses on polymerization reaction engineering and how polymer properties depend on structure.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5450
Requisites: Requires prerequisite courses of CHEN 4830 or CHEN 4330 and CHEN 3311 (all minimum grade C). Restricted to College of Engineering majors only.
CHEN 4460 (3) Polymer Engineering
Introductory polymer engineering course reviewing basic terminology and definitions; the properties and synthetic routes of important industrial polymers; and processing of polymers and their applications.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5460
Requisites: Requires prerequisite courses of CHEM 3311 and CHEN 3320 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4520 (3) Chemical Process Synthesis
Studies applied chemical process design including equipment specification and economic evaluation.
Requisites: Requires prerequisite courses of CHEN 3010 and CHEN 3210 or MCEN 3022 and CHEN 3220 and CHEN 4330 or CHEN 4830 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4521 (3) Physical Chemistry for Engineers
Examines the laws of classical thermodynamics followed by physical transformations of pure substances, the thermodynamics of simple mixtures and chemical equilibrium. Applies quantum theory to atomic and molecular structure. Presents the concepts and applications of statistical thermodynamics. Introduces rates of chemical reactions, reaction dynamics and catalysis.
Requisites: Requires prerequisite courses of APPM 2350 or MATH 2400 and CHEN 1211 or CHEM 1133 (all minimum grade C-). Requires a prerequisite or corequisite course of APPM 2360 (minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4530 (2) Chemical Engineering Design Project
Provides a team-based capstone design experience for chemical engineering students. Projects are sponsored by industry and student design teams collaborate with industrial consultants. Projects consider chemical process and product design with emphasis on economic analysis. Deliverables include an oral mid-project design review, a final oral presentation and final written design report.
Requisites: Requires prerequisite course of CHEN 4520 (minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4570 (4) Instrumentation and Process Control
Examines principles of control theory and their application to chemical processes. Focuses on single-loop feedback and feedforward control. Laboratory sessions cover measurement fundamentals, signal transmission, dynamic testing, control system synthesis, and implementation and adjustment.
Requisites: Requires prerequisite courses of CHEN 3220 and CHEN 4330 or CHEN 4830 and APPM 2360 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4630 (1) Intellectual Property Law and Engineering
Learn the fundamentals of the various types of intellectual property, obtain the ability to search the USPTO database for patents, learn the difference between provisional patents, utility patents and foreign patents and learn the timing requirements related to the filing of patents and public disclosure, use, and/or sale of an invention.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5630
Requisites: Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.

CHEN 4650 (3) Particle Technology
Aims to identify the important physical mechanisms occurring in processes involving particles, formulate and solve mathematical descriptions of such processes, and analyze experimental and theoretical results in both a qualitative and quantitative manner. Teaches students to apply this knowledge to the design of particulate systems. Conveys the breadth and depth of natural and industrial applications involving particulates.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5650
Requisites: Requires prerequisite courses of APPM 2360 and CHEN 3200 or MCEN 3021 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4801 (3) Pharmaceutical Biotechnology
Focuses on the engineering needed to bring therapeutic products derived from living organisms (e.g., proteins, peptides, DNA, RNA) from the production plant to the patient. Covers the challenges of keeping these products "active" as they are stored, shipped, and administered to patients.
Requisites: Requires prerequisite courses of CHEN 3320 and prerequisite or corequisite courses of CHEN 4830 or CHEN 4330 (all minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4802 (3) Tissue Engineering and Medical Devices
The purpose of this course is to develop a basic understanding of quantitative and qualitative aspects of tissue engineering and medical devices. Particular emphasis will be placed on topics of potential importance and significance to chemical and biological engineers. Students will be introduced to important professional, societal and entrepreneurial issues in the field by examining case studies in which drugs and medical products have been developed or are being considered for FDA approval and clinical use.
Requisites: Requires prerequisite course of CHEN 2810 or MCDB 1150 or EBIO 1210 and EBIO 1220 (minimum grade C-). Restricted to students with 57-180 credits (Junior or Senior) College of Engineering students only.

CHEN 4803 (3) Metabolic Engineering
Introduces basic concepts in metabolic engineering and explores modern approaches in metabolic and strain engineering. Application areas that will be discussed will include the use of metabolic engineering approaches in biofuels and biorefining as well as biopharmaceutical production.
Equivalent - Duplicate Degree Credit Not Granted: CHEN 5803
Requisites: Requires prerequisite course of CHEM 4700 (formerly CHEM 4711) or CHEM 4611 (minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4805 (3) Biomaterials
Provides an overview of biomaterials. Covers major classes of materials used in medical applications, properties, degradation mechanisms, and characterization methods, foreign body response, methods to control physiological response to biomaterial surfaces, biocompatibility, biomaterials used in soft and hard tissue replacements, drug delivery devices and tissue engineering, and design criteria for developing a material for a given biological application.
Requisites: Requires a prerequisite course of CHEN 2810 or MCDB 1150 or EBIO 1220 and EBIO 1230 and CHEN 3320 and CHEM 3311 (all minimum grade C-). Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.
Recommended: Prerequisite CHEM 3331.
CHEN 4810 (3) Biological Engineering Laboratory
Involves planning and execution of chemical engineering experiments on mass transfer operations, bioseparations, and biological reactors. Interprets experimental data with theoretical principles and statistical analysis. Emphasizes communication with written memos, full reports and oral presentations.

Requisites: Requires prerequisite courses of CHEN 2810 or MCDB 1150 and CHEN 3010 and CHEN 4830 (all minimum grade C-). Requires a corequisite course of CHEN 4820. Restricted to College of Engineering majors only.

CHEN 4820 (3) Biochemical Separations
Lect. and lab. Presents purification methods, mass transfer coefficients, problems specific to biologicals, and scale-up of processes. Also covers chromatography, phase extraction, supercritical fluids, sedimentation, precipitation, electrophoresis, dialysis, affinity techniques, cell separation, application of separations to bioreactors, and comparison of batch and continuous processes.

Requisites: Requires prerequisite course of CHEN 3220 (minimum grade C). Restricted to College of Engineering majors only.

CHEN 4830 (3) Chemical Engineering Biokinetics
Introduces chemical kinetics, chemical reactor design, and biological kinetics. Involves mass and energy balances for steady-state and transient reactor systems. Also covers residence time distribution, mass transfer, catalytic reactions, multiple steady states in reactors, enzyme kinetics, metabolic networks, and cell growth kinetics.

Requisites: Requires prerequisite course of CHEN 3320 (minimum grade C-). Restricted to College of Engineering majors only.

CHEN 4836 (3) Nanomaterials
Presents fundamental chemical and physical concepts that give rise to the unique optical, electronic and magnetic properties of nanoscale materials. Introduces important synthetic routes for producing nanomaterials, and interparticle forces governing colloidal behavior and self-assembly. Discusses current and potential applications in catalysis, biomedicine, renewable energy, and other fields.

Equivalent - Duplicate Degree Credit Not Granted: CHEN 5836

Requisites: Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.

CHEN 4838 (1-3) Special Topics in Chemical Engineering
Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.

Requisites: Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.

CHEN 4840 (1-4) Independent Study
Available to seniors with approval of chemical engineering department. Subject arranged to fit needs of student.

Repeatable: Repeatable for up to 6.00 total credit hours. Allows multiple enrollment in term.

Requisites: Restricted to students with 87-180 credits (Senior, Fifth Year Senior) College of Engineering majors only.