CREATIVE TECHNOLOGY AND DESIGN - BACHELOR OF SCIENCE (BSTM)

The Bachelor of Science in Creative Technology and Design (http://tam.colorado.edu) is an engineering degree like no other. Encompassing a broad, transdisciplinary course of study, the degree blends creativity and design with a rigorous engineering curriculum that emphasizes critical thinking, problem-solving, and creative production. Attracting designers, technologists, makers and inventors who seek diverse and adaptable skills, the degree opens doors to a wide range of 21st-century challenges and opportunities.

Industry and Career Paths

Students graduating with a major in Creative Technology and Design and prepared to enter professional positions in the following disciplines:

- Human-computer interaction.
- Information design and data visualization.
- Web design and development.
- Video and narrative media.
- Robotics and physical computing.
- Internet of Things design.
- Graphic design and visual communication.
- Game design and development.
- User-interface and user-experience design (UI/UX)
- Experience design.
- Digital sound, audio production and electronic music.
- Mobile application design and development.

Students who complete the BS degree program are also poised to pursue graduate or advanced degrees in engineering, other technological fields and design.

Hallmarks of the Program

- Most classes are small, studio-based courses that encourage group work and collaboration.
- Most classes are greater than 50 percent female-identifying or non-binary students, a percentage well above most engineering and computing programs.
- The interdisciplinary coursework stresses knowledge, skills and expertise in technology development through both design and engineering.
- Projects use an iterative creative process from problem finding and ideation through user-testing, implementation and deployment.
- Students learn to think critically about the ethical and cultural impacts of emerging technology.
- Faculty are engineers, designers and artists from diverse fields who are experts in working with students of varied backgrounds, abilities and interests.

Unique

With a solid engineering foundation, the BS in Creative Technology and Design program caters to an emerging generation of hybrid students. Students develop skills that extend beyond traditional engineering disciplines, eagerly producing technical and creative projects that integrate both engineering and design.

Transdisciplinary

The degree program is discipline agnostic, encouraging students to pursue their interests and passions in ways that conform to, as well as transcend, traditional disciplinary fields. By helping students discover, explore and expand these interests, faculty members prepare students for rapid shifts and innovations in tomorrow's technology landscape.

Creative Production and Critical Perspectives

Students are prolific creators who learn to critically and conceptually assess the works they create. Courses are designed on the studio model that integrates faculty and peer critique at every level. Graduates of the program are savvy and resourceful engineers, equal parts creator and critic, artist and theorist.

Requirements

Course Requirements

Students must complete a total of 128 credits in order to graduate with a BS in creative technology and design. The last 45 credit hours of the 128 for the BS degree must be earned via CU Boulder coursework only and while rostered in the College of Engineering & Applied Science.

A grade of C or better is necessary in all Foundation, Core, and Capstone courses. A grade of C- or higher is necessary in all Focus and CPT Electives.

The minimum passing grade for a course that is considered a prerequisite for another course is C- (unless it is a foundation, core or capstone course, then a C grade is considered passing).

Pass/fail credit will be permitted for up to 6 credits of free electives and/or H&SS electives, or for courses above and beyond degree requirements.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLS 1300</td>
<td>Introduction to Rocket Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or CSCI 1300</td>
<td>Gateway to Space</td>
<td></td>
</tr>
<tr>
<td>ATLS 2519</td>
<td>Special Topics in Creative Technology and Design</td>
<td>4</td>
</tr>
<tr>
<td>or CSCI 2270</td>
<td>Computer Science 2: Data Structures</td>
<td></td>
</tr>
<tr>
<td>GEEN 1400</td>
<td>Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>or ASEN 1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or ASEN 1403</td>
<td>Introduction to Rocket Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Electives.

Natural Science Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPM 1350</td>
<td>Calculus 1 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1300</td>
<td>Calculus 1</td>
<td></td>
</tr>
<tr>
<td>APPM 1360</td>
<td>Calculus 2 for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 2300</td>
<td>Calculus 2</td>
<td></td>
</tr>
</tbody>
</table>
| Mathematics Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>
| Mathematics Courses and Natural Science Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>College-Approved Writing Course 1</td>
<td>Writing, Humanities and Social Sciences (H&SS)</td>
<td>3</td>
</tr>
<tr>
<td>H&SS Electives 2</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
| Engineering and Computation Coursework

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLS 1300</td>
<td>Computational Foundations 1</td>
<td>4</td>
</tr>
<tr>
<td>or CSCI 1300</td>
<td>Computer Science 1: Starting Computing</td>
<td></td>
</tr>
<tr>
<td>ATLS 2519</td>
<td>Special Topics in Creative Technology and Design</td>
<td>4</td>
</tr>
<tr>
<td>or CSCI 2270</td>
<td>Computer Science 2: Data Structures</td>
<td></td>
</tr>
<tr>
<td>GEEN 1400</td>
<td>Engineering Projects</td>
<td>3</td>
</tr>
<tr>
<td>or ASEN 1400</td>
<td>Gateway to Space</td>
<td></td>
</tr>
<tr>
<td>or ASEN 1403</td>
<td>Introduction to Rocket Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Sample Four-Year Plan of Study

First Year
Fall Semester
ATLS 1100 Design Foundations 3
CSCI 1300 or ATLS 1300 Computer Science 1: Starting Computing or Computational Foundations 1 4
APPM 1350 or MATH 1300 Calculus 1 for Engineers or Calculus 1 4-5
First-Year Projects Course 3
Credit Hours 14-15

Spring Semester
ATLS 2000 The Meaning of Information Technology 3
Credit Hours 14-15

Second Year
Fall Semester
ATLS 2100 Image 3
ATLS 2200 Web 3
ATLS 2300 Text 3
ATLS 3100 Form 3
ATLS 3200 Sound 3
ATLS 3300 Object 3
Credit Hours 14-16

Spring Semester
ATLS 4000 Research Methods and Professional Practice 3
ATLS 4010 Capstone Projects 4
Critical Perspectives in Technology (CPT) Electives
CPT Electives 5
Focus Electives (project-based courses) 6
Focus Electives 6
Total Credit Hours 128

Third Year
Fall Semester
Critical Perspectives in Technology Elective 3
Focus Electives 6
Natural Science Course 3
Humanities or Social Sciences Elective 3
College-Approved Writing Course 2
Credit Hours 18-19

Spring Semester
Focus Electives 6
Humanities or Social Sciences Electives 6
Natural Science Course (if needed to fulfill 12 credits hours total of science) 3
Free Elective 3
Credit Hours 18-19

Fourth Year
Fall Semester
ATLS 4000 Research Methods and Professional Practice 3
Critical Perspectives in Technology Elective 3
Focus Elective 6
Humanities or Social Sciences Elective 3
Free Elective 6
Credit Hours 18

Spring Semester
ATLS 4010 Capstone Projects 4
Focus Elective 6
Credit Hours 18

1 Students may choose a course from the list of college-approved writing courses (http://www.colorado.edu/engineering/academics/policies/hss/).
2 Students may choose courses from the list of college-approved humanities and social sciences (HSS) electives (http://www.colorado.edu/engineering/academics/policies/hss/).
3 Students may choose two courses from the list of Mathematics Electives (https://www.colorado.edu/atlas/academics/undergraduate/bs-ctd-curriculum/bs-ctd-mathematics-electives/).
4 Natural Science Courses (use Class Search (https://classes.colorado.edu/) and under Advanced Search, choose "A&S GenEd: Distribution-Natural Sciences").
5 Students may choose two courses from the list of CPT Electives (https://www.colorado.edu/atlas/academics/undergraduate/cpt/).
6 Students may choose six courses from the list of Focus Electives (https://www.colorado.edu/atlas/bs-ctd-focus-electives/); at least 12 credits of which must be upper-division coursework.
Free Electives

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Credit Hours</td>
<td>128-134</td>
</tr>
</tbody>
</table>

1. Students may choose courses from the list of college-approved humanities and social sciences (HSS) electives (http://www.colorado.edu/engineering/academics/policies/hss/).

2. Students may choose a course from the list of college-approved writing courses (http://www.colorado.edu/engineering/academics/policies/hss/).

3. Natural Science Courses (use Class Search (https://classes.colorado.edu/) and under Advanced Search, choose "A&S GenEd: Distribution-Natural Sciences").

4. Students may choose two courses from the list of Mathematics Electives (https://www.colorado.edu/atlas/academics/undergraduate/bs-ctd-curriculum/bs-ctd-mathematics-electives/).

5. Students may choose two courses from the list of CPT Electives (https://www.colorado.edu/atlas/academics/undergraduate/cpt/+).

6. Students may choose six courses from the list of Focus Electives (https://www.colorado.edu/atlas/bs-ctd-focus-electives/); at least 12 credits of which must be upper-division coursework.

Learning Outcomes

Upon graduation, CTD students are expected to be able to:

- Develop work that addresses complex interdisciplinary problems, applying principles of engineering, computational thinking, and design using industry standard and emerging technologies.
- Understand the historical, cultural and psychological factors that impact the human experience of design.
- Engage in research, critical assessment and critique.
- Engage in iterative design and production to contribute novel functionalities, aesthetics or interactions.
- Collaborate on a team that effectively demonstrates task management, accountability and makes progress towards common goals.
- Recognize ethical and professional responsibilities and make informed discernments in applying creative technology solutions.
- Effectively communicate the functionality, purpose and impact of creative technology solutions in a wide range of professional contexts in a way that is thoughtful and respectful to others.