Computational Linguistics, Analytics, Search and Informatics
Lucile Berkeley Buchanan Building, rooms 114 & 124
T: 303-492-2159

This is a unique interdisciplinary degree that provides a solid foundation in both computer science and linguistics graduate coursework as well as several courses focused on data-driven linguistics, computational linguistics and information processing. The training is aimed at preparing students for careers in areas such as predictive text messaging, search engines, question-answering, interactive virtual agents and machine translation.  

Distance Education Option

Students can take individual courses toward a master's degree or graduate certificate through distance education (online). For more information, connect with the individual graduate program directly.

Due to the hands-on learning experience, some courses must be taken on campus. This is a hybrid program. 

Bachelor's–Accelerated Master's Degree Program

Students may earn this degree as part of the Bachelor's–Accelerated Master's (BAM) degree program, which allows currently enrolled CU Boulder undergraduate students the opportunity to earn a bachelor's and master's degree in a shorter period of time.

For more information, see the Accelerated Master's tab for the associated bachelor's degree(s):


Students must complete at least 32 hours of approved graduate study, including a 2-credit capstone course focused on a publishable research project, which will run in conjunction with an internship or a CU-based research project. As part of the capstone, students will be evaluated by their employer or industry project manager. Students will also prepare a technical report on the completed project that the program directors and project leader will jointly evaluate. A minimum course grade is a B and a minimum GPA for graduation is a 3.0.

To fulfill core requirements defined below, students must take graduate breadth courses in 3 different breadth bins. This includes core computer science (bins 1 and 3) and core CLASIC (bin 2).

Required Courses and Credits

Core Linguistics Courses9
Choose two of the following:
Linguistic Phonetics
Morphology and Syntax
Syntactic Analysis
Semantics and Pragmatics
Choose one:
Any LING course at the 5000-, 6000- or 7000-level (subject to advisor approval)
Core Computer Science Courses6
Bin 1 (choose one) 1
Recommended options:
Design and Analysis of Algorithms
Introduction to Theory of Computation
Formal Languages
Principles of Numerical Computation
Numerical Linear Algebra
Bin 3 (choose one) 1
Recommended options:
Datacenter Scale Computing - Methods, Systems and Techniques
Object-Oriented Analysis and Design
Fundamental Concepts of Programming Languages
CLASIC Capstone
LING/CSCI 5140CLASIC Capstone2
Core CLASIC Courses
CSCI/LING 5832Natural Language Processing (Required for everyone. Satisfies Bin 2 requirement)3
Choose two of the following:
CSCI 7000/LING 7800Current Topics in Computer Science (Topics: Computational Lexical Semantics or Computational Models of Discourse)3
CSCI/LING 7565Computational Phonology and Morphology3
Choose two of the following:6
Network Analysis and Modeling
Data Mining
Machine Learning
Neural Networks and Deep Learning
Advanced Machine Learning
Current Topics in Computer Science (Inference, Models & Simulation for Complex Systems)
Topics in Nonsymbolic Artificial Intelligence (Probabilistic Models of Human & Machine Intelligence)
Topics in Nonsymbolic Artificial Intelligence (Representation Learning for Language)
Introduction to Computational Corpus Linguistics
Open Topics in Linguistics (Machine Learning and Linguistics)
Topics in Language Use (Formal Models of Linguistics)
Topics in Comparative Linguistics (Computational Grammars)
Topics in Logic
Modal Logic
Any other CSCI or LING course at the 5000-, 6000- or 7000-level
Any Core course listed above (not already taken)
Total Credit Hours32

Learning Outcomes

The program is intended to:

  • Provide a solid foundation in computer science, data-driven linguistics and natural language processing graduate coursework. 
  • Educate graduates to be specialists in the application of computers to the processing of natural languages, such as English, Chinese, Arabic and Urdu.
  • Prepare students for jobs in the field of computational linguistics, also known as text analytics, natural language processing and informatics, a field critical to the success of mainstream global businesses who compete for employees qualified to address these needs.